
Anonyma: Anonymous Invitation-Only Registration in
Malicious Adversarial Model∗

SANAZ TAHERI BOSHROOYEH, Koç University, Turkey
ALPTEKİN KÜPÇÜ, Koç University, Turkey
ÖZNUR ÖZKASAP, Koç University, Turkey

In invitation-based systems, a new user can register upon having a threshold number of invitations issued by

the existing members. The newcomer hands his invitations to the system administrator who verifies whether

the invitations are issued by legitimate members. This causes the administrator to be aware of who is invited

by whom. However, the inviter-invitee relationship is privacy-sensitive information and can lead to inference

attacks where the invitee’s profile (e.g., political view or location) can be extracted through the profiles of his

inviters. Addressing this problem, we propose Anonyma, an anonymous invitation-based system, where a

corrupted administrator, who may even collude with a subset of existing members, is not able to figure out

who is invited by whom. We formally define and prove the inviter anonymity as well as unforgeability of

invitations against a malicious and adaptive adversary. Our design only incurs a constant cost to authenticate

a new registration. This is significantly better than similar works where the generation of invitations and

verification of new registration cause an overhead linear in the total number of existing members. Besides,

Anonyma is efficiently scalable in the sense that once a user joins the system, the administrator can instantly,

and without re-keying the existing members, issue credentials for the newcomer to be able to act as an inviter.

We additionally design AnonymaX , an anonymous cross-network invitation-based system empowering third-

party authentication where the invitations issued by the members of one system can be used for registering to

another system.

Additional Key Words and Phrases: Invitation-Based System, Anonymity, Unforgeability, Integrity, Cross-

Network Invitation, Third-party Authentication, Malicious Adversary.

ACM Reference Format:
Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap. 2023. Anonyma: Anonymous Invitation-

Only Registration in Malicious Adversarial Model. ACM Trans. Priv. Sec. 1, 1 (October 2023), 38 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Invitation-based systems [9], where registration is only possible through invitations from current

members, are used to limit the number of users, improve service quality, and protect against

spammers. In these systems, existing members, known as inviters, play a role in inviting new users,

referred to as invitees. The invitee receives invitations from a subset of inviters, submits them to

the server/system administrator for verification, and the server accepts or rejects the registration

request based on the legitimacy of the invitations. Various services and platforms have implemented

∗
This is an extension to our prior publication Inonymous [9]

Authors’ addresses: Sanaz Taheri Boshrooyeh, Koç University, Rumelifeneri Yolu, Sariyer, İstanbul, Turkey, staheri14@ku.

edu.tr; Alptekin Küpçü, Koç University, Rumelifeneri Yolu, Sariyer, İstanbul, Turkey, akupcu@ku.edu.tr; Öznur Özkasap,

Koç University, Rumelifeneri Yolu, Sariyer, İstanbul, Turkey, oozkasap@ku.edu.tr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

2471-2566/2023/10-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

invitation-only registration, such as Google Inbox, Orkut, Google Wave
1
, Spotify

2
, Facebook secret

groups
3
, WhatsApp

4
, Telegram

5
, and Facebook’s trustee-based social authentication [11, 37, 48].

While invitation-based systems offer benefits, they also have security concerns. The administrator’s

knowledge of who invited whom can lead to privacy breaches, as the relationship between inviters

and invitees may reveal personal attributes and characteristics such as location, religious beliefs,

sexual orientation, and political views about both the inviter and the invitee [18, 36, 47]. This leakage

of information, known as an inference attack, highlights the need to protect the inviter-invitee

relation as privacy-sensitive information [9].

Inonymous [9] introduces a solution to protect inviter anonymity and prevent inference attacks

in invitation-based systems. It allows invitees to prove their possession of valid invitations without

revealing their inviters’ identities. Inonymous ensures that only invitees with legitimate inviters

can join the system. However, in the presence of an active adversarial model, where parties deviate

from the protocol, the privacy guarantees of the design are compromised, and the relationship

between inviters and invitees becomes exposed.

Other existing studies, as discussed in detail in Section 7, do not meet the specific require-

ments of anonymous invitation-only registration simultaneously: inviter anonymity, invitation

unforgeability, and scalability. Group signature schemes lack invitation unforgeability, allowing the

inviter to generate unlimited signatures (invitations) without detection by the group administrator

[8, 16, 33, 64]. Selective-disclosure credential schemes focus on attribute anonymity rather than

protecting the identification of honest inviters under collusion between inviters and the group

administrator in invitation-based systems [15, 22, 62]. (𝑡, 𝑁) threshold ring signature schemes

suffer from bandwidth consumption, computational overhead, and performance degradation due

to large invitation sizes [10, 12, 41, 46, 49, 52]. E-voting systems burden non-inviters by requir-

ing the participation of all members in each voting round for anonymity, which is unnecessary

[26, 43, 51, 58]. Other e-voting approaches face scalability issues as they require re-keying the

entire system for each round of voting [5, 54]. Direct Anonymous Attestation (DAA) schemes

have linearly increasing invitation letter sizes and do not protect inviter/attester anonymity in

cooperative scenarios, making them unsuitable for anonymous invitation-based scenarios [13].

Delegatable Anonymous Credentials (DAC) lack sufficient protection for invitation unforgeability,

compromising the integrity of the invitation-based system [2, 19–21, 29, 34, 50].

These limitations emphasize the need for our proposal, Anonyma, which overcomes these

shortcomings and provides an efficient and provably secure solution for anonymous invitation-

based systems under an active and adaptive adversarial model. Anonyma builds upon the foundation
laid by Inonymous and addresses Inonymous shortcomings in withstanding the active adversarial

model. We conduct a comprehensive study to identify Inonymous vulnerabilities in the presence

of active adversaries and uncover various non-trivial attack scenarios that can compromise the

system’s anonymity and unforgeability. We detail these attack scenarios while revealing different

design choices of Anonyma. To enhance security, Anonyma intentionally integrates all identified

attack vectors into a robust game-based security definition, representing a significant advancement

over Inonymous. Additionally, a new set of security proofs is provided to support the effectiveness

of the malicious-resistant design. To counteract active attacks, Anonyma introduces several updates

to the design, namely, verifiable secret sharing schemes and zero-knowledge proof techniques

are leveraged to strengthen the system’s defenses while minimizing computational overhead.

1
http://www.macworld.com/article/1055383/gmail.html

2
https://community.spotify.com/t5/Accounts/Spotify-Family-Q-amp-A/td-p/988520

3
https://blog.hootsuite.com/facebook-secret-groups/

4
ttps://faq.whatsapp.com/en/android/26000123/?category=5245251

5
https://telegram.org/tour/groups

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 3

Furthermore, the design of Anonyma is updated to resist adaptive adversarial corruption, making it

a more realistic solution compared to Inonymous which could only protect invitation-unforgeability

against static adversaries.

Anonyma: An overview of Anonyma is depicted in Figure 1. In Anonyma, the group administrator

designates initial members who can generate invitations for their intended invitees. Members can

generate multiple invitations, but it is guaranteed that no inviter can generate more than one valid

invitation for a particular invitee. Invitees must collect a specific number of invitations (denoted as

𝑡) from distinct members. These collected invitations are then aggregated to remove identifiable

information about individual inviters, preserving inviter anonymity. The administrator can verify

the integrity of the invitations without knowing the identities of the inviters.

Additionally, we propose AnonymaX , an anonymous cross-network invitation-based system that

empowers the third-party authentication paradigm
6
. It enables mutually trusted domains to rely

on each other’s authentication mechanisms, similar to Microsoft Active Directory
7
. In AnonymaX ,

users from different administrative domains can invite each other, allowing them to join new

domains like Instagram through invitations from members of other networks such as Twitter [9].

Fig. 1. Anonyma overview. The invitee receives the individual invitations, aggregates them into a
unified letter, and hands it over to the group administrator. The group administrator can authenti-
cate the letter without knowing the identity of the inviters.
In summary, the contributions of Anonyma span both security & privacy aspects, and design

efficiency as outlined below.

• Inviter Anonymity: No adversarial entity would be able to identify who is invited by

whom. This property holds even if the group administrator colludes with a subset of inviters

of an invitee and attempts to discover the identity of the other inviters of that invitee. Both

group administrators and the inviters are active adversaries who may not follow the protocol

specifications. The formal security definition and proof are supplied in Section 6.

• Invitation Unforgeability: An adversarial invitee cannot register to the system unless he

has 𝑡 many legitimate invitations. This property holds even if the invitee colludes with 𝑡 − 1
inviters (clearly the registration of an invitee with 𝑡 invitations is legitimate). The formal

security definition and proof are supplied in Section 6. The provided definition also implies

the following properties.

(1) Invitation non-exchangability: This property indicates that invitations issued for a

particular invitee are not reusable for another user i.e., each invitation is tied to its intended

invitee.

6
https://www.synopsys.com/blogs/software-security/5-reasons-third-party-authentication/

7
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-

server/cc977993(v=technet.10)?redirectedfrom=MSDN.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

4 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

(2) Preventing double invitation: This feature indicates that an inviter cannot issue more

than one valid invitation for a single invitee. This is essential since otherwise an invitee

with insufficient inviters (i.e., 𝑡
′
< 𝑡) can obtain multiple invitations (e.g., 𝑡 − 𝑡 ′) from one

of her inviters and successfully register.

Note that in an invitation-based system, any collection of 𝑡 members can decide to invite

arbitrary many invitees. This is a legitimate property that complies with the invitation-only

policy and should not count as a violation of invitation-unforgeability.

• Short invitations: Each invitation, as well as the aggregated version, embodies only two

group elements regardless of the threshold 𝑡 and the current number of system members.

Additionally, the complexity of communication among all the parties is of constant overhead.

• Non-Interactive: The invitation generation is a stand-alone non-interactive procedure that

each inviter can run needless to the presence of the invitee, other invites, and the group

administrator. The same holds for the verification of the final aggregated invitation that is

executed by the group administrator.

• Light computations: All the computations inAnonyma are light and efficient. An inviter has

to carry out a constant number of group exponentiation for invitation generation (𝑂 (1)). The
running time complexity of the invitee for aggregation of the 𝑡 invitations is 𝑂 (𝑡) whereas
the group administrator verifies the final consolidated invitation in 𝑂 (1). This is in contrast

to the related work [10, 12, 46, 49] where the inviter’s computational overhead is𝑂 (𝑁) where
𝑁 is the total number of group members.

• Scalability: In Anonyma, the set of group members who are eligible to issue invitations

(being inviters) is dynamic and the server can, efficiently and without re-keying the existing

members, generate credentials for a new user to empower her to invite others. This is

significantly better than the related studies [5, 54] where the same action imposes 𝑂 (𝑁)
communication overhead where 𝑁 is the total number of group members.

2 NOTATIONS AND PRELIMINARIES
Notation:We refer to a Probabilistic Polynomial-Time entity as PPT. TTP stands for Trusted Third

Party. 𝑥 ∈𝑅 𝑋 and 𝑥 ← 𝑋 both mean 𝑥 is randomly selected from set 𝑋 . ⊥ indicates an empty

string. ≡𝑐 stands for computational indistinguishability. We use 𝐷𝐿𝑔 (𝑦) to indicate the discrete

logarithm of 𝑦 in base 𝑔.

Negligible Function: Function 𝑓 is negligible if for ∀𝑝 (.) where 𝑝 (.) is polynomial, there exists

integer 𝑁 s.t. for every 𝑛 > 𝑁 , 𝑓 (𝑛) < 1

𝑝 (𝑛) .

Pseudo-Random Generator [6]: A deterministic polynomial time function 𝑃 : {0, 1}𝑚 →
{0, 1}𝑙 (𝑚) (where 𝑙 (.) is a polynomial) is called Pseudo Random Generator (PRG) if 𝑚 < 𝑙 (𝑚)
and for any probabilistic polynomial-time distinguisher 𝐷 there exists a negligible function 𝑛𝑒𝑔𝑙 (.)
such that:

|𝑃𝑟 [𝑥 ← {0, 1}𝑚 : 𝐷 (𝑃 (𝑥)) = 1] − 𝑃𝑟 [𝑦 ← {0, 1}𝑙 (𝑚) : 𝐷 (𝑦) = 1] | = 𝑛𝑒𝑔𝑙 (𝑚) (1)

(t,n)-Shamir Secret Sharing Scheme (SSS): The (t,n)-Shamir secret sharing scheme [61] is a tool

by which one can split a secret value into 𝑛 pieces such that any subset of 𝑡 shares can reconstruct

the secret. The scheme works based on polynomial evaluations. Let 𝐹𝑞 be a finite field of order 𝑞.

The secret holder/dealer picks a random polynomial 𝑓 of degree 𝑡 − 1 with coefficients from 𝑍𝑞 :

𝑓 (𝑥) =
𝑡−1∑︁
𝑖=0

𝑎𝑖 · 𝑥𝑖 (2)

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 5

The dealer sets the secret data 𝑆 as the evaluation of that function at point 0 i.e., 𝑓 (0) = 𝑎0 = 𝑆 . The
share of each participant shall be one point on 𝑓 e.g., 𝑓 (𝑗) is the share of 𝑗𝑡ℎ shareholder. As such,

a dealer can generate arbitrary many shares from its secret (i.e., by evaluating function 𝑓 on a new

point). Since each polynomial of degree 𝑡 − 1 can be uniquely reconstructed by having 𝑡 distinct

points of that function, 𝑡 Shamir shareholders are able to reconstruct the secret. Given any 𝑡 shares

{(𝑖, 𝑠𝑖)}𝑡𝑖=1, the secret reconstruction algorithm works as below.

𝑆 = 𝑓 (0) =
𝑡∑︁
𝑖=1

𝑠𝑖 · 𝐵𝑖 (3)

where 𝐵𝑖s are Lagrange coefficients defined as

𝐵𝑖 =

𝑗=1:𝑡∏
𝑗≠𝑖

𝑗

𝑗 − 𝑖 (mod q) (4)

Shamir secret sharing scheme satisfies the following properties: 1) Given 𝑡 or more than t shares, it

can reconstruct the secret 𝑆 easily; and 2) with knowledge of fewer than 𝑡 shares, it cannot recon-

struct the secret 𝑆 . Shamir’s scheme is information theoretically secure relying on no computational

assumption.

Shamir shares are homomorphic under addition operation i.e., let [𝑠1] and [𝑠2] be shares

of 𝑆1 and 𝑆2 (using (𝑡, 𝑛)-Shamir secret sharing scheme), then [𝑠1] + [𝑠2] constitutes a share of 𝑆1+𝑆2.

Verifiable Shamir Secret Sharing Scheme Feldman [32] proposes a verifiable secret-sharing

scheme that is an extension of Shamir secret sharing. In this version, shareholders can verify the

validity of their shares and ensure that the same polynomial is being evaluated. The secret dealer

generates a random polynomial 𝑓 using the standard Shamir secret sharing scheme, as shown

in Equation 3, and performs secret share calculation. However, to guarantee the authenticity of

these shares, the secret owner distributes commitments to the coefficients of 𝑓 (.) modulo 𝑞, by

publishing 𝐹0 = 𝑔
𝑎0 , 𝐹1 = 𝑔

𝑎1 , · · · , 𝐹𝑡−1 = 𝑔𝑎𝑡−1 . Each shareholder can verify the authenticity of their

share 𝑠𝑖 using the polynomial commitments provided in Equation 5.

𝑡−1∏
𝑗=0

𝐹 𝑖
𝑗

𝑗 = 𝑔𝑎0 · 𝑔𝑎1 ·𝑖 · · ·𝑔𝑎𝑡−1 ·𝑖𝑡−1 = 𝑔𝑎0+𝑎1 ·𝑖+···+𝑎𝑡−1 ·𝑖𝑡−1 = 𝑔𝑓 (𝑖) ?

== 𝑔𝑠𝑖 (5)

A share 𝑠𝑖 is considered valid only if the equality check in Equation 5 holds.

Multiplicative Homomorphic Encryption: A public key encryption scheme 𝜋 consists of three

algorithms key generation, encryption, and decryption, denoted by 𝜋 = (EGen, Enc,Dec). Using
EGen, a pair of keys is generated called encryption key 𝑒𝑘 and decryption key 𝑑𝑘 . 𝜋 is called

multiplicatively homomorphic if for every 𝑎 and 𝑏, Enc𝑒𝑘 (𝑎) ⊗ Enc𝑒𝑘 (𝑏) = Enc𝑒𝑘 (𝑎 · 𝑏) where
𝑎 and 𝑏 belong to the encryption message space and ⊗ is an operation over ciphertexts. As an

example, in ElGamal encryption [31], ⊗ corresponds to group multiplication. Additionally, we have

Enc𝑒𝑘 (𝑎)𝑐 = Enc𝑒𝑘 (𝑎𝑐) where a is a plain message and 𝑐 is any integer. Throughout the paper, we

consider the ElGamal scheme as our underlying encryption scheme.

Signature Scheme: A signature scheme [57] Sig consists of three algorithms key generation,

sign and verify denoted by Sig = (SGen, Sign, SVrfy). A pair of keys (𝑠𝑘, 𝑣𝑘) is generated via SGen
where 𝑠𝑘 is the signature key and 𝑣𝑘 is the verification key. The signer signs a message𝑚 using 𝑠𝑘 by

computing [= Sign𝑠𝑘 (𝑚). Given the verification key 𝑣𝑘 , a receiver of signature runs SVrfy𝑣𝑘 ([,𝑚)
to verify.

A signature scheme Sig = (SGen, Sign, SVrfy) is said to be existentially unforgeable under

adaptive chosen message attack if ∀ probabilistic polynomial time adversary 𝐴, there exists a

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

6 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

negligible function 𝑛𝑒𝑔𝑙 (.) s.t. the following holds [42]:
𝑃𝑟 [(𝑠𝑘, 𝑣𝑘) ← SGen(1_); (𝑚,𝜎) ← 𝐴Sign𝑠𝑘 (.) (𝑣𝑘)

s.t.𝑚 ∉ 𝑄 and SVrfy𝑣𝑘 (𝑚,𝜎) = 𝑎𝑐𝑐𝑒𝑝𝑡] = 𝑛𝑒𝑔𝑙 (_) (6)

𝐴Sign𝑠𝑘 (.) indicates that the adversary has oracle access to the signature algorithm. 𝑄 indicates the

set of adversary’s queries to the signature oracle.

Zero-knowledge Proof of Knowledge of Discrete Logarithm (ZKPODL): This proof system
was initially introduced by Schnorr [59] for proving the knowledge of a discrete logarithm in

the group 𝐺 of prime order 𝑞 with generator 𝑔. That is, for a given 𝜔,𝑔 ∈ 𝐺 , one can prove the

knowledge of 𝑥 ∈ 𝑍𝑞 s.t. 𝑥 = 𝐷𝐿𝑔 (𝜔) (𝐷𝐿 stands for discrete logarithm). Using the method featured

by [40], we convert the Σ protocol of Schnorr to a zero-knowledge proof system. More information

about Σ protocols and their conversion to a zero-knowledge proof system is provided in Section A.

Zero-Knowledge Proof of Plaintext Knowledge: This proof system is used to prove the plaintext

knowledge of a given ciphertext. That is, given ciphertext 𝐶 that is encrypted under public key

𝑝𝑘 , a prover proves the knowledge of 𝑥 and 𝑟 s.t. 𝐶 = Enc𝑝𝑘 (𝑥, 𝑟). 𝑟 is the randomness used

while encryption. We instantiate such a proof system using the proposal of [38] for the ElGamal

encryption scheme.

Zero-Knowledge Proof of Discrete Logarithm Equality: For a group 𝐺 of prime order 𝑞 and

generators 𝑔1, 𝑔2, ℎ1, ℎ2 ∈ 𝐺 , the ZKP of discrete logarithm equality is a protocol to prove that

ℎ1 = 𝑔
𝛼
1
and ℎ2 = 𝑔

𝛼
2
where 𝛼 ∈ 𝑍𝑞 [24].

BilinearMap: Consider𝐺1 and𝐺2 as multiplicative groups of prime order 𝑞. Let𝑔1 be the generator

of 𝐺1. We employ an efficiently computable bilinear map 𝑒 : 𝐺1 × 𝐺1 → 𝐺2 with the following

properties [63]

• Bilinearity: ∀𝑢, 𝑣 ∈ 𝐺1 and ∀𝑎, 𝑏 ∈ Z𝑞 : 𝑒 (𝑢𝑎, 𝑣𝑏) = 𝑒 (𝑢, 𝑣)𝑎 ·𝑏 .
• Non-degeneracy: 𝑒 (𝑔1, 𝑔1) ≠ 1.

We adopted Type 1 pairing (symmetric) in favor of simple protocol description and security analysis,

nevertheless, this can be translated to an asymmetric pairing type to empower more efficient

implementation [23].

Computational Diffie-Hellman Assumption [30]: Given a cyclic group𝐺 of prime order 𝑞 with

a generator 𝑔, and two randomly selected group elements ℎ1 = 𝑔𝑟1 , ℎ2 = 𝑔𝑟2 , the Computational

Diffie-Hellman (CDH) assumption is hard relative to 𝐺 if for every PPT adversary A there exists a

negligible function 𝑛𝑒𝑔𝑙 (_) where _ is the security parameter, such that:

Pr[𝐴(𝐺,𝑞, 𝑔, ℎ1, ℎ2) = 𝑔𝑟1 ·𝑟2] = 𝑛𝑒𝑔𝑙 (_)

3 CONSTRUCTION
Anonyma consists of the following algorithms: SetUp, Token generation (Tgen), Invitation generation
(Igen), Invitation collection (Icoll), Invitation Verification (Ivrfy) and Registration (Reg). The summary

of each algorithm is explained in Section 3.1 followed by the full construction in Section 3.2.

Throughout the paper, we assume that all the parties communicate via secure and authenticated

channels. The general interaction between the parties is illustrated in Figure 2.

3.1 Construction Overview
• SetUp: The server invokes the SetUp algorithm with the input of the security parameter 1

_

to initialize the system parameters: a cyclic group 𝐺 , a master value 𝑆 ∈𝑅 𝐺 , as well as key
pairs for a signature scheme (denoted by 𝑠𝑘, 𝑣𝑘) and ElGamal key pair (denoted by 𝑒𝑘, 𝑑𝑘). At

the beginning of the system lifetime, the server needs to register at least 𝑡 initial users so

that they can start inviting others. These initial members are given credentials by the server

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 7

Invitee(𝑗)Server 𝑆: master value Member(𝑖)

𝑠!𝑅𝑢𝑛	𝑆𝑒𝑡𝑈𝑝(1!)	to	generate	
system parameters	including	
a	signature	key	pair	 𝑠𝑘, 𝑣𝑘 .
𝑃𝑢𝑏𝑙𝑖𝑠ℎ	𝑝𝑢𝑏𝑙𝑖𝑐	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
Param.

𝑇𝑜𝑘𝑒𝑛 = 𝑇𝑔𝑒𝑛 𝑠𝑘, 𝑗 𝑇𝑜𝑘𝑒𝑛 𝑇𝑜𝑘𝑒𝑛

𝐼𝑛𝑣" = 𝐼𝑔𝑒𝑛(𝑇𝑜𝑘𝑒𝑛, 𝑠" , 𝑃𝑎𝑟𝑎𝑚)

𝐼𝑛𝑣𝐿𝑒𝑡 = 𝐼𝑐𝑜𝑙𝑙(𝐼𝑛𝑣" #$"$%, 𝑃𝑎𝑟𝑎𝑚)

𝑖𝑓(𝑉𝑟𝑓𝑦(𝐼𝑛𝑣𝐿𝑒𝑡, 𝑇𝑜𝑘𝑒𝑛, 𝑃𝑎𝑟𝑎𝑚, 𝑑𝑘))
𝑠& = 𝑅𝑒𝑔(𝑗)

𝐼𝑛𝑣𝐿𝑒𝑡, 𝑇𝑜𝑘𝑒𝑛

𝑠&

𝑅𝑒𝑞𝑢𝑒𝑠𝑡	
𝑓𝑜𝑟	𝑇𝑜𝑘𝑒𝑛

𝐼𝑛𝑣"

𝑍𝐾𝑃𝑂𝐼𝐶

𝑣𝑒𝑟𝑖𝑓𝑦	𝑠ℎ𝑎𝑟𝑒	𝑠&	𝑢𝑠𝑖𝑛𝑔	𝑃𝑎𝑟𝑎𝑚

Fig. 2. Anonyma workflow.

to be able to make invitations. Each credential is indeed a share 𝑠𝑖 of the server’s master

value 𝑆 that is generated using (𝑡, 𝑛)-SSS scheme. For the shares to be verifiable (the member

can verify whether or not his piece is valid), the server publishes the commitment to the

polynomial function generated as part of the SSS scheme. A newcomer can register to the

system if she manages to compute a designated function of the master value 𝑆 . Given that

𝑆 can be reconstructed only with the combination of 𝑡 valid shares i.e., the presence of 𝑡

shareholders, the newcomer cannot register unless with having 𝑡 distinct inviters. As such,

invitation unforgeability is guaranteed. Note that any group of 𝑡 members has the ability

to invite an unlimited number of invitees to the system. However, it is important to clarify

that this ability should not be misconstrued as granting complete control of the system to its

members. The invitation-only policy serves as a means to foster the system’s growth while

maintaining trust among its members, rather than imposing restrictions on its expansion.

• 𝑇𝑔𝑒𝑛: Each newcomer (i.e., invitee) contacts the server to get a token. The server runs the

𝑇𝑔𝑒𝑛 algorithm to generate a 𝑇𝑜𝑘𝑒𝑛 and hands it to the invitee. The 𝑇𝑜𝑘𝑒𝑛 is a server signed

certificate that embodies the index of the newcomer (each user is associated with a unique

index) as well as a random element from the group 𝐺 . Tokens shall be used by the inviters

to invite their intended invitee. Invitations issued for a particular token cannot be used for

another token. This way, the non-exchangeability of the invitations is guaranteed.

• Igen: The Invitee contacts each of his 𝑡 inviters (this communication cannot be observed by

the server/administrator) and communicates his 𝑇𝑜𝑘𝑒𝑛 with them. Provided a valid 𝑇𝑜𝑘𝑒𝑛,

each inviter generates an invitation by executing Igen. The invitation consists of two parts:

1) a masked version of the inviter’s share 𝑠𝑖 , 2) and the masking value encrypted using the

server’s 𝑒𝑘 . The 𝑇𝑜𝑘𝑒𝑛 is integrated into both parts of the invitation. As a part of 𝐼𝑔𝑒𝑛, the

inviter has to prove in zero-knowledge that his invitation is well structured. For this sake, we

devise a zero-knowledge proof protocol (i.e., Zero-Knowledge Proof of Invitation Correctness

(ZKPOIC)). This proof helps in protecting between-inviter anonymity, i.e., inviters who

collude with the server do not learn the identity of other inviters. Next, the inviter hands his

invitation 𝐼𝑛𝑣𝑖 to the invitee.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

8 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

• 𝐼𝑐𝑜𝑙𝑙 : Upon the receipt of 𝑡 invitations {Inv𝑖 }𝑡𝑖=1, the invitee invokes the 𝐼𝑐𝑜𝑙𝑙 algorithm

through which he aggregates and blinds the invitations into a unified invitation letter 𝐼𝑛𝑣𝐿𝑒𝑡 .

Aggregation and blinding remove any identifiable information about the identity of the

inviters and helps in providing inviter anonymity (especially against a corrupted server).

Additionally, through aggregation, the masking version of the master value 𝑆 gets homo-

morphically reconstructed. We utilize the homomorphic property of both Shamir shares and

the ElGamal encryption scheme to enable aggregation. At last, the invitee submits the final

invitation letter 𝐼𝑛𝑣𝐿𝑒𝑡 together with his 𝑇𝑜𝑘𝑒𝑛 to the server.

• Ivrfy: The server authenticates the invitation letter by running Ivrfy and accepts or rejects

accordingly. In a nutshell, the 𝐼𝑛𝑣𝐿𝑒𝑡 is valid if and only if it contains the master value 𝑆 .

• Reg: If the verification passes successfully (i.e., Ivrfy outputs accept), the server runs the

𝑅𝑒𝑔 algorithm to issue credentials for the newcomer to enable him to act as an inviter. This

credential is a Shamir share of the server’s master value 𝑆 . The newcomer verifies the validity

of his share using the parameters output by the server in the SetUp phase and then stores his

share for inviting others.

3.2 Full Construction
3.2.1 SetUp: This algorithm is run by the server who inputs the security parameter 1

_
and generates

system parameters Param as follows.

• Two primes 𝑝 and 𝑞 of length _ such that 𝑞 |𝑝 − 1.
• 𝑔 is a generator of a cyclic subgroup 𝐺 of order q in 𝑍 ∗𝑝 .
• ElGamal encryption scheme 𝜋 = (EGen, Enc,Dec) with the key pair (𝑒𝑘 = ℎ = 𝑔𝑎, 𝑑𝑘 = 𝑎)
denoting encryption key and decryption key, respectively. 𝑑𝑘 remains at the server while 𝑒𝑘

is published.

• A signature scheme Sig = (SGen, Sign, SVrfy). The signature and verification keys (𝑠𝑘, 𝑣𝑘)
are generated according to SGen. 𝑣𝑘 is published.

• A pseudo random generator PRG:{0, 1}_ → 𝑍𝑞 .

• A master value 𝑆 ← 𝑍𝑞 .

• A collision resistant, fixed length, hash function (𝐻𝐺𝑒𝑛, 𝐻), with the key ℎ𝑘 ← 𝐻𝐺𝑒𝑛(1_).
ℎ𝑘 is an implicit input to the hash function 𝐻 (.).
• A randomly chosen polynomial function 𝑓 (𝑦) = 𝑎𝑡−1𝑦𝑡−1 + ... +𝑎1𝑦 +𝑎0 of degree 𝑡 − 1 whose
coefficients 𝑎1, ..., 𝑎𝑡−1 belong to 𝑍𝑞 and 𝑎0 = 𝑆 .

• The server initially registers 𝑡 users into the system so that they can start inviting outsiders.

Each user is associated with a unique index 𝑖 and shall receive the evaluation of function 𝑓

on that index, i.e. 𝑠𝑖 = 𝑓 (𝑖). We refer to 𝑠𝑖 as the master share of the user with index 𝑖 .

• The server publishes 𝐹0 = 𝑔𝑎0 , 𝐹1 = 𝑔𝑎1 , · · · , 𝐹𝑡−1 = 𝑔𝑎𝑡−1 as the commitment to the selected

function 𝑓 . Given 𝐹0, · · · , 𝐹𝑡−1, the computation of commitment on 𝑓 (𝑖) for any 𝑖 is immediate

as given in Equation 20. We will use 𝛾𝑖 to indicate 𝑔𝑠𝑖 .

𝛾𝑖 =

𝑡−1∏
𝑗=0

𝐹 𝑖
𝑗

𝑗 = 𝑔𝑎0 · 𝑔𝑎1 ·𝑖 · · ·𝑔𝑎𝑡−1 ·𝑖𝑡−1 = 𝑔𝑎0+𝑎1 ·𝑖+···+𝑎𝑡−1 ·𝑖𝑡−1 = 𝑔𝑓 (𝑖) = 𝑔𝑠𝑖 (7)

• The server publishes public parameters 𝑃𝑎𝑟𝑎𝑚 = (𝐺, 𝑝, 𝑞, 𝑔, 𝑒𝑘, 𝑣𝑘, (𝐹0, · · · , 𝐹𝑡−1)).

3.2.2 Token Generation: Users wishing to register to the system first need to contact the server

and obtain a token. The server generates a token through the token generation algorithm shown in

Algorithm 3.1. In this procedure, the server initially assigns the user a unique index 𝑗 = 𝐻 (𝑛 + 1)
where 𝑛 is the total number of requested tokens so far. 𝑛 is initially set to 𝑡 to account for the initial

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 9

registered 𝑡 members at the SetUp phase. Next, the server generates a random group element 𝜔

(line 2) and certifies 𝑗 | |𝜔 using his signing key 𝑠𝑘 (line 3). Let [be the signature outcome. The

tuple ([, 𝑗, 𝜔) constitutes the Token (line 4). We remark that the server is not required to record any

information regarding the issued tokens. Thus, the generated tokens can simply be discarded and

only the total number of generated tokens 𝑛 needs to be retained. Therefore, we do not incur any
storage load on the server per token.

Algorithm 3.1: Tgen [Server]

Input: 𝑠𝑘, 𝑛
Output: 𝑇𝑜𝑘𝑒𝑛

1 𝑗 = 𝐻 (𝑛 + 1)
2 𝑟 ← 𝑍𝑞 ; 𝜔 = 𝑔𝑟

3 [= Sign𝑠𝑘 (𝑗 | |𝜔)
4 𝑇𝑜𝑘𝑒𝑛 = ([, 𝑗, 𝜔)

3.2.3 Invitation Generation: Invitation generation is run by the inviter to generate an invitation

for a token given by the invitee. The procedure is shown in Algorithm 4.2. We assume that invitee

and inviter communicate out of band (cannot be observed by the server/administrator), e.g., using

a messaging application. Firstly, the inviter checks the authenticity of the token against the server

verification key 𝑣𝑘 (line 1). Then, he samples a random value 𝛿𝑖 from 𝑍𝑞 by applying PRG on

the random seed 𝑣 (lines 2-3). Then, he blinds his master share using 𝛿𝑖 , i.e., 𝑠𝑖 + 𝛿𝑖 , and then ties

this value to the provided token as 𝜏𝑖 = 𝜔𝑠𝑖+𝛿𝑖
(line 4). He also encrypts the masking value 𝜔𝛿𝑖

as 𝑒𝛿𝑖 using the server’s encryption 𝑒𝑘 (line 5). To ensure that the inviter is acting honestly (i.e.,

generating the invitation as instructed in the algorithm), the inviter must prove the correctness

of the invitation in zero-knowledge. To enable this, we propose a zero-knowledge proof system

for the Proof Of Invitation Correctness 𝑍𝐾𝑃𝑂𝐼𝐶 . The inviter and invitee engage in 𝑍𝐾𝑃𝑂𝐼𝐶 (line

7) through which the inviter proves the correctness of his invitation 𝐼𝑛𝑣𝑖 = (𝜏𝑖 , 𝑒𝛿𝑖) to the invitee

in zero-knowledge. In the following, we explain our proposed proof system. We first draw a Σ
protocol for 𝑃𝑂𝐼𝐶 and prove its security. Then, the zero-knowledge variant is immediate using the

method proposed in [40, 56].

Algorithm 3.2: Igen [Inviter]

Input: 𝑇𝑜𝑘𝑒𝑛 = ([, 𝑗, 𝜔), 𝑠𝑖 , 𝑃𝑎𝑟𝑎𝑚
Output: 𝐼𝑛𝑣𝑖/⊥

1 if 𝑆𝑣𝑟 𝑓 𝑦𝑣𝑘 ([, 𝑗 | |𝜔)=accept then
2 𝑣 ← {0, 1}_
3 𝛿𝑖 = PRG(𝑣)
4 𝜏𝑖 = 𝜔

𝑠𝑖+𝛿𝑖

5 𝑒𝛿𝑖 = Enc𝑒𝑘 (𝜔𝛿𝑖)
6 𝐼𝑛𝑣𝑖 = (𝜏𝑖 , 𝑒𝛿𝑖)
7 return 𝑖𝑛𝑣𝑖 //Inviter authenticates 𝐼𝑛𝑣𝑖 through 𝑍𝐾𝑃𝑂𝐼𝐶

8 return ⊥

Σ Protocol for Proof Of Invitation Correctness (POIC): The invitation is constructed cor-

rectly if the inviter proves the following statements:

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

10 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

(1) The inviter possesses a valid share of the master value 𝑆 . That is, the inviter holding index 𝑖

must prove the knowledge of the discrete log of 𝛾𝑖 , i.e., 𝑠𝑖 . Note that 𝛾𝑖 = 𝑔
𝑠𝑖
can be computed

from 𝐹0, ..., 𝐹𝑡−1 as explained in Equation 20.

(2) The inviter knows the plaintext of 𝑒𝛿𝑖 , i.e., the knowledge of𝜔
𝛿𝑖
and 𝑟 such that 𝑒𝛿𝑖 = (𝑒𝛿𝑖,1 =

𝜔𝛿𝑖 · ℎ𝑟 , 𝑒𝛿𝑖,2 = 𝑔𝑟).
(3) The randomness 𝛿𝑖 used in the creation of 𝜏𝑖 is correctly encrypted in 𝑒𝛿𝑖 . This can be captured

by proving that 𝜏𝑖 · 𝑒𝛿−1𝑖,1 · ℎ𝑟 (= 𝜔𝑠𝑖
) and 𝛾𝑖 = 𝑔

𝑠𝑖
have the same discrete logarithm 𝑠𝑖 . The

former is true due to Equation 8.

𝜏𝑖 · 𝑒𝛿−1𝑖,1 · ℎ𝑟 = 𝜔𝛿𝑖+𝑠𝑖 · 𝜔−𝛿𝑖 · ℎ−𝑟 · ℎ𝑟 = 𝜔𝑠𝑖
(8)

To enable zero-knowledge proof of the aforementioned statements, we devise a Σ-protocol (𝑃,𝑉) as
depicted in Figure 3. We refer to this proof system by Proof of Invitation Correctness, or POIC.
POIC captures the relation 𝑅 indicated in Equation 9 which embodies four different predicates.

𝑅 = {(

Public inputs︷ ︸︸ ︷
(𝜏𝑖 , 𝑒𝛿𝑖 = (𝑒𝛿𝑖,1, 𝑒𝛿𝑖,2), 𝛾𝑖 , 𝜔),

Private inputs︷ ︸︸ ︷
(𝑠𝑖 , 𝑟 , 𝛿𝑖)) | (9)

𝐷𝐿𝑔 (𝛾𝑖) = 𝑠𝑖 ∧ (10)

𝑒𝛿𝑖,1 = 𝜔
𝛿𝑖 · ℎ𝑟 ∧ (11)

𝐷𝐿𝑔 (𝑒𝛿𝑖,2) = 𝑟 ∧ (12)

𝐷𝐿𝜔 (𝜏𝑖 · 𝑒𝛿−1𝑖,1 · ℎ𝑟) = 𝐷𝐿𝑔 (𝛾𝑖) = 𝑠𝑖 } (13)

For the proof of relation 𝑅 in Equation 9, we incorporate the Schnorr protocol [42] for the proof of

discrete logarithm knowledge (Equations 10 and 12), proof of plaintext knowledge as proposed in

[38] (Equation 11), and the proof of discrete logarithm equality [24] (Equation 13).

Completeness: To prove that completeness holds, observe that if the prover 𝑃 follows the

protocol honestly, then due to the Equations 14, 15, 16, and 17, the verifier 𝑉 accepts.

𝐴 · 𝛾𝑒𝑖 = 𝑔𝑠
′ · (𝑔𝑠𝑖)𝑒 = 𝑔𝑠′+𝑒 ·𝑠𝑖 = 𝑔𝑍1

(14)

𝐵1 · 𝑒𝛿𝑒𝑖,1 = (𝜔𝛿 ′ · ℎ𝑟 ′) · (𝜔𝛿 · ℎ𝑟)𝑒 = 𝜔𝛿 ′+𝑒 ·𝛿𝑖 · ℎ𝑟 ′+𝑒 ·𝑟 = 𝜔𝑍2 · ℎ𝑍3
(15)

𝐵2 · 𝑒𝛿𝑒𝑖,2 = (𝑔𝑟
′) · (𝑔𝑟)𝑒 = 𝑔𝑟 ′+𝑒 ·𝑟 = 𝑔𝑍3

(16)

𝐶 · 𝜏𝑒𝑖 · 𝐵−1 · 𝑒𝛿−𝑒𝑖,1 · ℎ𝑍3 =

(𝜔𝑠′+𝛿 ′) · (𝜔𝑒 ·𝑠𝑖+𝑒 ·𝛿𝑖) · (𝜔−𝛿 ′ · ℎ−𝑟 ′) · (𝜔−𝑒 ·𝛿𝑖 · ℎ−𝑒 ·𝑟) · ℎ𝑟 ′+𝑒 ·𝑟 =
𝜔 (𝑠

′+𝑒 ·𝑠𝑖) = 𝜔𝑍1
(17)

We prove the special soundness and special honest verifier zero-knowledge properties in Section

B. We additionally present the security properties of a zero-knowledge proof system for POIC that

is achieved using the method given in [40, 56].

3.2.4 Invitation Collection: Upon receipt of 𝑡 invitations, the invitee runs the Invitation Collection

(𝐼𝑐𝑜𝑙𝑙) procedure as indicated in Algorithm 3.3. The invitee aggregates 𝜏𝑖 values as
∏𝑡

𝑖=1 𝜏
𝐵𝑖

𝑖
(line

3). He operates similarly for 𝑒𝛿𝑖 values as
∏𝑡

𝑖=1 𝑒𝛿
𝐵𝑖

𝑖
(line 4). 𝐵𝑖s are the Lagrange coefficients (as

defined in Equation 4) used for the reconstruction of the master value 𝑆 from the Shamir shares.

Next, the invitee randomizes both aggregates𝑇 and 𝑒Δ by adding a random value of his own choice,

i.e., 𝛿∗. The randomization cancels out the effect of the Lagrange coefficients and makes the final

aggregates, i.e., 𝑇 and 𝑒Δ, independent of the 𝐵𝑖 values. Recall that the Lagrange coefficients are

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 11

Prover (𝑠𝑖 , 𝑟 , 𝛿𝑖) Verifier

𝑠′, 𝑟 ′, 𝛿 ′ ← 𝑍𝑞
𝐴 = 𝑔𝑠

′

𝐵1 = 𝜔
𝛿 ′ · ℎ𝑟 ′

𝐵2 = 𝑔
𝑟 ′

𝐶 = 𝜔𝑠′+𝛿 ′ 𝐴,𝐵=(𝐵1,𝐵2),𝐶−−−−−−−−−−−−−→
𝑒←−−−−−−−−−−−−− 𝑒 ← 𝑍𝑞

𝑍1 = 𝑠
′ + 𝑒 · 𝑠𝑖

𝑍2 = 𝛿
′ + 𝑒 · 𝛿𝑖

𝑍3 = 𝑟
′ + 𝑒 · 𝑟

𝑍1,𝑍2,𝑍3−−−−−−−−−−−−−→
if (𝐴 · 𝛾𝑒𝑖 == 𝑔𝑍1

∧ 𝐵1 · 𝑒𝛿𝑒𝑖,1 == 𝜔𝑍2 · ℎ𝑍3

∧ 𝐵2 · 𝑒𝛿𝑒𝑖,2 == 𝑔𝑍3

∧𝐶 · 𝜏𝑒𝑖 · 𝐵−1 · 𝑒𝛿−𝑒𝑖,1 · ℎ𝑍3 == 𝜔𝑍1)
Accept

Fig. 3. Σ protocol of Proof of Invitation Correctness for the common input 𝜏𝑖 , 𝑒𝛿𝑖 = (𝑒𝛿𝑖,1, 𝑒𝛿𝑖,2), 𝛾𝑖 , 𝜔 . The
prover has the private input (𝑠𝑖 , 𝑟 , 𝛿𝑖).

dependent on the inviters’ indices and by hiding them we aim at protecting inviter anonymity. The

final invitation letter 𝐼𝑛𝑣𝐿𝑒𝑡 shall be the pair (𝑇, 𝑒Δ). The invitee submits the invitation letter and

the token to the server.

In Equations 18 and 19, we expand the result of 𝑇 and 𝑒Δ, which leads to the following observa-

tions.

𝑇 = 𝜔𝛿∗ ·
𝑡∏
𝑖=1

𝜏
𝐵𝑖

𝑖
= 𝜔𝛿∗ ·

𝑡∏
𝑖=1

𝜔𝐵𝑖 ·𝑠𝑖+𝐵𝑖 ·𝛿𝑖 =𝜔𝛿∗+∑𝑡
𝑖=1 𝐵𝑖 ·𝑠𝑖+

∑𝑡
𝑖=1 𝐵𝑖 ·𝛿𝑖

= 𝜔𝑆+𝛿∗+∑𝑡
𝑖=1 𝐵𝑖 ·𝛿𝑖 = 𝜔𝑆+Δ

(18)

𝑒Δ = Enc𝑒𝑘 (𝜔𝛿∗).
𝑡∏
𝑖=1

𝑒𝛿
𝐵𝑖

𝑖
= Enc𝑒𝑘 (𝜔𝛿∗).

𝑡∏
𝑖=1

Enc𝑒𝑘 (𝜔𝐵𝑖 ·𝛿𝑖)

= Enc𝑒𝑘 (𝜔𝛿∗+∑𝑡
𝑖=1 𝐵𝑖 ·𝛿𝑖) = Enc𝑒𝑘 (𝜔Δ)

(19)

The first observation is that 𝑇 has the master value 𝑆 embedded in its exponent. Intuitively, the

presence of 𝑆 in the exponent proves that the invitee has 𝑡 distinct invitations. Otherwise, the

reconstruction of 𝑆 would be impossible (we elaborate on this in Section 6 and formally prove

the unforgeability of invitations). Another observation is that the computation of both 𝑇 and 𝑒Δ
depends on the token 𝜔 . Hence, as desired, the resultant 𝐼𝑛𝑣𝐿𝑒𝑡 is now bound to the given token.

This would help with the non-exchangeability of the invitations. At last, 𝑇 contains a masked

version of master value, i.e., 𝑆 +Δ, in the exponent whereas 𝑒Δ embodies the corresponding masking

value Δ. The encryption 𝑒Δ of the masking value shall be used at the server for verification purposes

(see invitation verification below).

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

12 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

Algorithm 3.3: Icoll [Invitee]
Input: {𝐼𝑛𝑣𝑖 = (𝜏𝑖 , 𝑒𝛿𝑖) |1 ≤ 𝑖 ≤ 𝑡}, 𝑃𝑎𝑟𝑎𝑚
Output: 𝐼𝑛𝑣𝐿𝑒𝑡

1 𝑟 ← {0, 1}_
2 𝛿∗ = PRG(𝑟)
3 𝑇 = 𝜔𝛿∗ ·∏𝑡

𝑖=1 𝜏
𝐵𝑖

𝑖

4 𝑒Δ = Enc𝑒𝑘 (𝜔𝛿∗) ·∏𝑡
𝑖=1 𝑒𝛿

𝐵𝑖

𝑖

5 𝐼𝑛𝑣𝐿𝑒𝑡 = (𝑇, 𝑒Δ)

3.2.5 Invitation Verification: Once the invitee hands his invitation letter 𝐼𝑛𝑣𝐿𝑒𝑡 together with the

corresponding token 𝑇𝑜𝑘𝑒𝑛 to the server, the server executes the invitation verification procedure

shown in Algorithm 3.4. As the first step, the server authenticates the 𝑇𝑜𝑘𝑒𝑛, i.e., whether it is

signed under the server’s signature key 𝑠𝑘 (line 1). Next, the validity of the invitation letter 𝐼𝑛𝑣𝐿𝑒𝑡

must be checked. For that, the server decrypts 𝑒Δ using its decryption key 𝑑𝑘 and obtains 𝜔Δ
(line

2). Recall that Δ was used to mask the master value 𝑆 in𝑇 = 𝜔𝑆+Δ
. Thus, if𝑇 and 𝑒Δ are constructed

correctly, we expect that 𝜔𝑆 · 𝜔Δ = 𝑇 (line 3). If all the verification steps are passed successfully,

then the server accepts the user’s membership request.

Algorithm 3.4: Ivrfy [Server]

Input: 𝐼𝑛𝑣𝐿𝑒𝑡 = (𝑇, 𝑒Δ),𝑇𝑜𝑘𝑒𝑛 = ([, 𝑗, 𝜔), 𝑃𝑎𝑟𝑎𝑚, 𝑑𝑘

Output: 𝑟𝑒 𝑗𝑒𝑐𝑡/𝑎𝑐𝑐𝑒𝑝𝑡
1 if 𝑣𝑘 ([, 𝑗 | |𝜔)=accept then
2 𝜔Δ = 𝐷𝑒𝑐𝑑𝑘 (𝑒Δ)
3 if 𝜔𝑆 · 𝜔Δ = 𝑇 then
4 return accept

3.2.6 Registration: The server invokes the registration procedure (Algorithm 3.5) for users who

pass the verification phase (Algorithm 3.4). The input to Algorithm 3.5 is the index 𝑗 of the newcomer,

and the output is a Shamir share Φ𝑗 of the master value 𝑆 , where Φ𝑗 is the evaluation of polynomial

𝑓 at point 𝑗 (line 1). Note that the index 𝑗 is the index included in the user’s 𝑇𝑜𝑘𝑒𝑛 = ([, 𝑗, 𝜔).
The server delivers Φ𝑗 to the user who can then start making invitations as an inviter. The user

authenticates his share by comparing the commitment 𝛾 𝑗 (as given in Equation 20) against its own

share, i.e., 𝑔Φ𝑗
. If they are equal, the user accepts and stores the share.

Algorithm 3.5: Reg [Server]
Input: 𝑗
Output: Φ𝑗

1 Φ𝑗 = 𝑓 (𝑗)

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 13

4 ANONYMAX: ANONYMOUS CROSS-NETWORK INVITATION-BASED SYSTEM
AnonymaX is an anonymous cross-network invitation-based system, which enables third-party

authentication
8
. That is, mutually trusted domains can rely on each other’s authentication mecha-

nism. Essentially, if a user is authenticated by one domain, its authentication is accepted by all other

domains that trust the authenticating domain. Users of different trusting administrative domains

can be inviters of each other. In specific, a user can join one domain, e.g., Twitter, by obtaining invi-

tations from members of another network, e.g., Facebook. Facebook and Twitter in the preceding

example are called authenticating domain/network (AN) and registration domain/network (RN),
respectively.

Failed Approaches: One simple but cumbersome solution to empower a cross-network

invitation-based system is to follow the regular invitation-based system, i.e. each time a user

wants to join the registration domain, the authenticating server authenticates that particular user

and communicates the authentication result to the registration server. However, this solution re-

quires the two servers to keep in contact with each other and imposes unnecessary overhead on

the authenticating server.

An alternative approach proposed by Inonymous [9] (our prior work), is that the authenticating
server would publish the commitment over the master value 𝑆 as 𝑔𝑆 to the registration servers.

Subsequently, registration servers would follow a different verification method (relying on bilinear

maps) to authenticate invitations on their own. While this solution works for the honest but curious

adversarial model, it fails in providing invitation unforgeability against a malicious adversary, which

is explained next. Consider registration
1
and registration

2
as two registration servers. The corrupted

registration
1
wants to join registration

2
as an invitee without enough inviters. registration

1
receives

a token with the random value 𝜔 from registration
2
and then issues the same token to the users

who want to join its service. As such, registration
1
can reuse the invitation letters of his users to

craft a valid invitation letter to join registration
2
. We address this issue in AnonymaX by making

the registration servers prove in zero-knowledge (using an interactive proof) that they know the

discrete logarithm 𝐷𝐿(𝑤) of their issued tokens during the 𝑇𝑔𝑒𝑛 protocol. As such, no registration
server can issue tokens that are not generated by itself.

4.1 AnonymaX Construction
In the description below, we assume there is one authenticating network provider AN and multiple

registration servers denoted by RN𝑗 .

4.1.1 SetUp. The parameters published by the authenticating network provider is denoted by

𝑃𝑎𝑟𝑎𝑚AN and comprises the following items:

• Two primes 𝑝 and 𝑞 of length _ such that 𝑞 |𝑝 − 1.
• 𝑔 is a generator of a cyclic subgroup 𝐺 of order q in 𝑍 ∗𝑝 .
• A master value 𝑆 ← 𝑍𝑞 .

• A randomly chosen polynomial function 𝑓 (𝑦) = 𝑎𝑡−1𝑦𝑡−1 + ... +𝑎1𝑦 +𝑎0 of degree 𝑡 − 1 whose
coefficients 𝑎1, ..., 𝑎𝑡−1 belong to 𝑍𝑞 and 𝑎0 = 𝑆 .

• The server initially registers 𝑡 users into the system so that they can start inviting outsiders.

Each user is associated with a unique index 𝑖 and shall receive the evaluation of function 𝑓

on that index, i.e. 𝑠𝑖 = 𝑓 (𝑖). We refer to 𝑠𝑖 as the master share of the user with index 𝑖 .

• The server publishes 𝐹0 = 𝑔𝑎0 , 𝐹1 = 𝑔𝑎1 , · · · , 𝐹𝑡−1 = 𝑔𝑎𝑡−1 as the commitment to the selected

function 𝑓 . Given 𝐹0, · · · , 𝐹𝑡−1, the computation of commitment on 𝑓 (𝑖) for any 𝑖 is immediate

8
https://www.synopsys.com/blogs/software-security/5-reasons-third-party-authentication/

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

14 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

as given in Equation 20. We will use 𝛾𝑖 to indicate 𝑔𝑠𝑖 .

𝛾𝑖 =

𝑡−1∏
𝑗=0

𝐹 𝑖
𝑗

𝑗 = 𝑔𝑎0 · 𝑔𝑎1 ·𝑖 · · ·𝑔𝑎𝑡−1 ·𝑖𝑡−1 = 𝑔𝑎0+𝑎1 ·𝑖+···+𝑎𝑡−1 ·𝑖𝑡−1 = 𝑔𝑓 (𝑖) = 𝑔𝑠𝑖 (20)

• A bilinear map 𝑒: 𝐺 ×𝐺 → 𝐺2 where 𝐺 and 𝐺2 are multiplicative groups of prime order 𝑞.

• The server publishes public parameters 𝑃𝑎𝑟𝑎𝑚AN = (𝐺, 𝑝, 𝑞, 𝑔, 𝑒, (𝐹0, · · · , 𝐹𝑡−1)).
Upon the receipt of the 𝑃𝑎𝑟𝑎𝑚AN from the authenticating server, a registration server RN𝑗 generates

the following parameters denoted by 𝑃𝑎𝑟𝑎𝑚RN𝑗
.

• ElGamal encryption scheme 𝜋 = (EGen, Enc,Dec) with the key pair (𝑒𝑘RN𝑗
= ℎ = 𝑔𝑎, 𝑑𝑘RN𝑗

=

𝑎) denoting encryption key and decryption key, respectively. 𝑑𝑘RN𝑗
remains at the server

while 𝑒𝑘RN𝑗
is published.

• A signature scheme Sig = (SGen, Sign, SVrfy). The signature and verification keys

(𝑠𝑘RN𝑗
, 𝑣𝑘RN𝑗

) are generated according to SGen. 𝑣𝑘RN𝑗
is published.

• A pseudo random generator PRG:{0, 1}_ → 𝑍𝑞 .

• A collision resistant, fixed length, hash function (𝐻𝐺𝑒𝑛, 𝐻), with the key ℎ𝑘 ← 𝐻𝐺𝑒𝑛(1_).
ℎ𝑘 is an implicit input to the hash function 𝐻 (.).
• A counter 𝑛RN𝑗

which is initially zero and gets incremented per token generation.

• The server publishes public parameters 𝑃𝑎𝑟𝑎𝑚RN𝑗
= (𝑒𝑘RN𝑗

, 𝑣𝑘RN𝑗
).

4.1.2 Token Generation. Each invitee willing to join RN𝑗 shall obtain a token from RN𝑗 . During

the token generation, the registration server follows Algorithm 3.1 and additionally must prove in

zero-knowledge that it knows the discrete logarithm of the 𝜔 embodied in the token. This is to

protect inviter anonymity against the corrupted registration server. As such, after the issuance of a

token, the registration server runs an instance of ZKPODL protocol (given in section 2) with the

invitee. The modified procedure is provided in Algorithm 4.1.

Algorithm 4.1: XTgen [registration Server RN𝑗]

Input: 𝑃𝑎𝑟𝑎𝑚AN, 𝑃𝑎𝑟𝑎𝑚RN𝑗
, 𝑠𝑘RN𝑗

Output: 𝑇𝑜𝑘𝑒𝑛

1 𝑖 = 𝐻 (𝑛RN𝑗
+ 1)

2 𝑟 ← 𝑍𝑞 ; 𝜔 = 𝑔𝑟

3 [= Sign𝑠𝑘RN𝑗
(𝑖 | |𝜔)

4 𝑇𝑜𝑘𝑒𝑛 = ([, 𝑖, 𝜔)
5 Run 𝑍𝐾𝑃𝑂𝐷𝐿((𝐺,𝑞, 𝑔, 𝜔), 𝑟)

Upon successful proof, the invitee accepts the token.

4.1.3 Invitation Generation. The invitee needs to collect invitations from the members of the

authenticating network AN to be used in the registration of a particular registration network RN𝑗 .

Inviters issue invitations as in the regular invitation procedure given in Algorithm 4.2. However,

the inviters should verify the tokens against the verification key of the issuing server i.e., RN𝑗 . Also,

the inviters shall use the encryption key of the registration network 𝑒𝑘RN𝑗
to encrypt their masking

values. As such, in Algorithms 4.2 and 3.3, the inviter uses 𝑒𝑘RN𝑗
and 𝑣𝑘RN𝑗

, i.e. 𝑃𝑎𝑟𝑎𝑚RN𝑗
as input.

Therefore, the invitation letters received by the RN𝑗 are of the form 𝐼𝑛𝑣𝐿𝑒𝑡 = (𝑇, 𝑒Δ) where 𝑒Δ is

an encrypted masking value under 𝑒𝑘RN𝑗
.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 15

Algorithm 4.2: XIgen [Inviter]

Input: 𝑇𝑜𝑘𝑒𝑛 = ([, 𝑗, 𝜔), 𝑠𝑖 , 𝑃𝑎𝑟𝑎𝑚RN𝑗

Output: 𝐼𝑛𝑣𝑖/⊥
1 if 𝑆𝑣𝑟 𝑓 𝑦𝑣𝑘RN𝑗

([, 𝑗 | |𝜔)=accept then
2 𝑣 ← {0, 1}_
3 𝛿𝑖 = PRG(𝑣)
4 𝜏𝑖 = 𝜔

𝑠𝑖+𝛿𝑖

5 𝑒𝛿𝑖 = Enc𝑒𝑘RN𝑗
(𝜔𝛿𝑖)

6 𝐼𝑛𝑣𝑖 = (𝜏𝑖 , 𝑒𝛿𝑖)
7 return 𝑖𝑛𝑣𝑖 //Inviter authenticates 𝐼𝑛𝑣𝑖 through 𝑍𝐾𝑃𝑂𝐼𝐶

8 return ⊥

4.1.4 Invitation Collection. Each invitation is encrypted using an identical encryption key 𝑒𝑘RN𝑗
,

and they all possess a portion of the same master value 𝑆 . As a result, the set of homomorphic

operations outlined in 𝐼𝑐𝑜𝑙𝑙 i.e., Algorithm 3.3 can be followed by the invitee without any alterations.

4.1.5 Invitation Verification. The verification routine run by the registration server RN𝑗 , which

is also shown in Algorithm 4.3, relies on the existence of a bilinear map 𝑒: 𝐺 ×𝐺 → 𝐺2 where 𝐺

and 𝐺2 are multiplicative groups of prime order 𝑞. The bilinear map description is available in the

public parameters of authenticating server i.e., 𝑃𝑎𝑟𝑎𝑚AN. The only difference between Algorithm

4.3 and Algorithm 3.4 is at the second verification step i.e., line 3. The correctness holds by the

bilinearity of the bilinear map 𝑒 , as in Equation 21.

𝑒 (𝜔,𝑔𝑆) · 𝑒 (𝜔Δ, 𝑔) = 𝑒 (𝜔,𝑔)𝑆 · 𝑒 (𝜔,𝑔)Δ = 𝑒 (𝑤,𝑔)𝑆+Δ = 𝑒 (𝑤𝑆+Δ, 𝑔)
= 𝑒 (𝑇,𝑔)

(21)

Algorithm 4.3: XIVerify [registration Server RN𝑗]

Input: 𝐼𝑛𝑣𝐿𝑒𝑡 = (𝑇, 𝑒Δ),𝑇𝑜𝑘𝑒𝑛 = ([, 𝑖, 𝜔), 𝑃𝑎𝑟𝑎𝑚AN, 𝑃𝑎𝑟𝑎𝑚RN𝑗
, 𝑑𝑘RN𝑗

Output: 𝑟𝑒 𝑗𝑒𝑐𝑡/𝑎𝑐𝑐𝑒𝑝𝑡
1 if SVrfy𝑣𝑘RN𝑗

([, 𝑖 | |𝜔)=accept then
2 𝜔Δ = 𝐷𝑒𝑐𝑑𝑘RN𝑗

(𝑒Δ)
3 if 𝑒 (𝜔,𝑔𝑆) · 𝑒 (𝜔Δ, 𝑔) = 𝑒 (𝑇,𝑔) then
4 return accept

5 PERFORMANCE
5.1 Running Time
In this section, we analyze the running time of each algorithm of Anonyma.
Simulation setting: The execution time was measured using a standard laptop equipped with an

Intel Core i5 CPU running at 1.6 GHz and 8 GB of 1600 MHz DDR3 memory. The simulation setup

consists of 100 registered members and 100 invitees. Each invitee receives a specific number of

invitations, determined by a threshold, from randomly selected inviters among the 100 initially

registered members. The DSA signature scheme [44] is utilized with a key length of 2048 bits. The

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

16 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

SetUp Tgen Igen Ivrfy Reg

Server 2265 ms 2.28 ms - 1.71 ms 0.02 ms

Inviter - - 6.26 ms - -

Table 1. Running time of the server and the inviter. (ms: milliseconds)

2 4 6 8 10

10

15

20

25

30

Invitation threshold

T
i
m
e
i
n
m
i
l
l
i
s
e
c
o
n
d
s

Fig. 4. Invitee running time for 𝐼𝑐𝑜𝑙𝑙 .

experimental results obtained under these conditions are collected and summarized in Table 1 and

Figure 4. More detailed explanations are provided subsequently.

Server: The server takes 2265 milliseconds to complete the SetUp phase, which needs to be

executed only once throughout the lifetime of the system. The Token Generation algorithm re-

quires 2.28 milliseconds to run. The Invitation Verification procedure takes 1.71 milliseconds. The

Registration process for each new member requires 0.02 milliseconds.

Inviter: The inviter’s involvement is limited to executing the Invitation Generation algorithm,

which takes approximately 6.26 milliseconds to complete.

Invitee: The invitee carries out the invitation collection (𝐼𝑐𝑜𝑙𝑙) procedure, which has a running

time that is directly proportional to the number of required invitations i.e., 𝑡 . Specifically, the

running time of 𝐼𝑐𝑜𝑙𝑙 can be expressed as 𝑡 · 𝑡𝑖𝑚𝑒𝐴𝑢𝑡ℎ + (𝑡 − 1) · 𝑡𝑖𝑚𝑒𝐴𝑔𝑔, where 𝑡 represents
the threshold, 𝑡𝑖𝑚𝑒𝐴𝑢𝑡ℎ is the time taken to authenticate each invitation, and 𝑡𝑖𝑚𝑒𝐴𝑔𝑔 is the time

required for the homomorphic aggregation of two individual invitations. Experimental data reveals

that 𝑡𝑖𝑚𝑒𝐴𝑢𝑡ℎ ≈ 5𝑚𝑠 and 𝑡𝑖𝑚𝑒𝐴𝑔𝑔 ≈ 6𝑚𝑠 . The observed results, depicted in Figure 4, support this

relationship.

5.2 Communication Complexity
The communication complexity signifies the amount of data exchanged among the parties.Anonyma
features an asymptotic communication complexity that is constant in the security parameter. The

concrete values are also measured as the number of exchanged bits and are summarized in Table 3

and explained next. 𝐼𝑐𝑜𝑙𝑙 and 𝐼𝑣𝑟 𝑓 𝑦 are both non-interactive and hence incur no communication

complexity. In the𝑇𝑔𝑒𝑛 protocol, the transmission of𝑇𝑜𝑘𝑒𝑛 (one group element of size 1024 bits and

a signature of size 2048 bits) incurs 3072 bits≈ 0.38 KB. For the invitation generation protocol 𝐼𝑔𝑒𝑛,

the inviter exchanges the invitation (consisting of 3 group elements) together with the ZKPOIC (with

8 group elements) which on aggregate yields 11264 bits (≈ 1.4 KB) data transfer. The registration

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 17

Tgen Igen Icoll Reg

Server 0.38 KB - - 0.9 KB

Invitee 0.38 KB 1.4 KB - 0.9 KB

Inviter/Group member - 1.4 KB - -

Table 2. The communication complexity of protocols in Anonyma for each involved party. Values are also
measured as the number of exchanged bits. KB stands for KilloBytes.

Server Inviter Invitee

Storage 2.61 + 0.26 · 𝑡 KB 0.13 KB 0 KB

Table 3. The storage overhead of Anonyma’s entities. KB stands for KilloBytes. 𝑡 is the invitation threshold.

protocol involves the invitee submitting the invitation letter (with 3 group elements) together with

the token (of size 3072 bits) to the server which results in 6144 bits (≈ 0.77 KB) data exchange. The

server then responds by a share of the master secret, which is of size 1024 bits (≈ 0.13 KB). This

results in an aggregate communication overhead of approximately 0.9KB for both the invitee and

the server.

5.3 Storage
The storage requirement of each entity is measured based on the number of bits that the party

needs to persistently retain locally. The server holds two pairs of keys for signature and encryption,

hence requiring ≈ 20896 bits (≈ 2.61 KB) of storage. Moreover, the server saves the description of

the polynomial of degree 𝑡 − 1 with 𝑡 coefficients and their corresponding commitments which

results in ≈ 2𝑡 · 1024 bits (≈ 0.26 · 𝑡 KB) of storage requirement at the server. The inviter only needs

to keep its share of the master value which is of size 1024 bits (≈ 0.13 KB). For the invitee, no local

storage is required.

6 SECURITY
In this section, we provide security definitions for inviter anonymity and invitation unforgeability,

and then prove the security of Anonyma (Sections 6.1 and 6.2). In Section 6.3, we prove the security

of AnonymaX for which we supply a new security definition capturing invitation unforgeability

in the cross-network invitation based systems. The formal proof of special soundness and honest

verifier zero-knowledge property of our proposed Σ protocol for proof of invitation correctness

(POIC), as well as the ideal functionality 𝐹𝑅
𝑃𝑂𝐼𝐶

corresponding to the zero-knowledge version of

POIC are provided in the Appendix, section B.

6.1 Inviter Anonymity
An invitation-based system protects inviter anonymity if an invitee with 𝑡 inviters can authenticate

himself to the server without disclosing the identity of his inviters to the server. In the extreme

situation where a corrupted server also manages to control 𝑡 − 1 inviters of an invitee, the inviter

anonymity should guarantee that the identity of the remaining non-colluding inviter remains

protected against the server and other inviters. The coalition of the server and 𝑡 − 1 inviters is
the most powerful adversary against inviter anonymity. In the following, we present the formal

definition of inviter anonymity as well as a formal security proof of inviter anonymity of Anonyma.

6.1.1 Security Definition: We model inviter anonymity as a game denoted by InvAnonymA (_)
played between a challenger and an adversary. The challenger acts as the invitee as well as the

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

18 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

uncorrupted members of the system. On the other hand, the adversary plays as the server as well as

arbitrary many corrupted members. The challenger is to register the invitee into the system while

𝑡 − 1 inviters of the invitee are controlled by the adversary and the remaining inviter is under the

control of the challenger. As such, the adversary issues 𝑡 − 1 invitations on behalf of the corrupted

inviters. Then, the adversary selects two indexes 𝑢0, 𝑢1 corresponding to two uncorrupted members.

The challenger selects one of them randomly as 𝑢𝑏 , where 𝑏 ∈ {0, 1}, to be the other inviter. The
challenger issues an invitation from 𝑢𝑏 for the invitee and combines it with the 𝑡 − 1 invitations
issued by the adversary. The final invitation letter is submitted to the adversary (who also plays

the role of the server). The challenge of the adversary is to guess a bit 𝑏 indicating the index of the

uncorrupted inviter. If the adversary cannot guess that index with more than a negligible advantage,

then the system provides inviter anonymity. The formal definition follows.

Inviter Anonymity Experiment InvAnonymA (_)
(1) The adversary is given the security parameter 1

_
. It acts as the server and hands over

𝑃𝑎𝑟𝑎𝑚 to the challenger.

(2) The adversary registers arbitrary many users to the system. The adversary instructs

the challenger to register honest users through the 𝑅𝑒𝑔 protocol. 𝑈ℎ and 𝑈𝑐 contain

the indices of the honest and corrupted members, respectively.

(3)(a) The adversary outputs the index of two honest inviters 𝑢0, 𝑢1 ∈ 𝑈ℎ .

(b) The adversary, acting as the server, generates a token 𝑇𝑜𝑘𝑒𝑛 for the invitee with

index 𝑗∗ ∈ 𝑈ℎ .

(c) The adversary specifies a set of 𝑡 −1 indices 𝐼𝑐 ⊂ 𝑈𝑐 to be the corrupted inviters. For

every 𝑖 ∈ 𝐼𝑐 , the adversary engages with the challenger in the execution of the 𝐼𝑔𝑒𝑛

protocol using 𝑇𝑜𝑘𝑒𝑛 as the input. As the result, the invitee (i.e., the challenger)

obtains a set of 𝑡 − 1 invitations denoted by {𝐼𝑛𝑣𝑖 }𝑖∈𝐼𝑐 .
(4)(a) The challenger selects a bit value 𝑏 ← {0, 1}. The challenger runs the 𝐼𝑔𝑒𝑛 protocol

over 𝑇𝑜𝑘𝑒𝑛 to issue an invitation from 𝑢𝑏 for the invitee. Let 𝐼𝑛𝑣𝑏 be the result.

(b) The challenger runs 𝐼𝑐𝑜𝑙𝑙 using {𝐼𝑛𝑣𝑖 }𝑖∈𝐼𝑐 ∪ 𝐼𝑛𝑣𝑏 and 𝑃𝑎𝑟𝑎𝑚 and generates an

invitation letter 𝐼𝑛𝑣𝐿𝑒𝑡 . The challenger attempts to register to the system by sending

𝐼𝑛𝑣𝐿𝑒𝑡 to the adversary.

(5) The adversary guesses a bit 𝑏
′
.

(6) The output of the game is 1 if 𝑏 == 𝑏
′
, 0 otherwise.

Definition 6.1. An invitation-based system has inviter anonymity if for every probabilistic

polynomial time adversary 𝐴 there exists a negligible function 𝑛𝑒𝑔𝑙 (.) such that:

𝑃𝑟 [InvAnonymA (_) = 1] = 1

2
+ 𝑛𝑒𝑔𝑙 (_)

At a high level, in Anonyma, the anonymity of the inviter holds due to the soundness of

the proposed ZKPOIC (zero-knowledge proof of invitation correctness) and the security of the

pseudo-random number generator (i.e., PRG). Below, to give an insight into how ZKPOIC can

protect inviter anonymity, we draw a situation where the lack of ZKPOIC would immediately break

inviter anonymity. Then, by relying on the 𝐹𝑅
𝑃𝑂𝐼𝐶

hybrid model for our proof, we relate the inviter

anonymity of Anonyma to the security of the deployed PRG.

Recall that, as defined in the game, the adversary controls the server and 𝑡 − 1 inviters of the
honest invitee. Due to the employed ZKPOIC, the invitee is assured that the inviters are not

able to deviate from the protocol descriptions and hence would have to use their real master

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 19

shares for the invitation generation. This implies that the master value 𝑆 shall be reconstructed

correctly as the output of 𝐼𝑐𝑜𝑙𝑙 . Therefore, as the result of the registration of the invitee (step 4.b

from InvAnonymA (_) experiment), the server obtains 𝐼𝑛𝑣𝐿𝑒𝑡 = (𝑇 = 𝜔𝑆+Δ, 𝑒Δ) out of which the

adversary can learn 𝑆 and Δ. According to the Shamir secret sharing scheme, although the adversary

knows 𝑡 − 1 shares that are used for the reconstruction of 𝑆 , the remaining contributing shareholder

can be any of the existing members, and hence the inviter anonymity is guaranteed. Now, consider

that the inviters are not required to prove the correctness of their invitations. The 𝑡 − 1 corrupted
inviters use zeros instead of their real master shares for invitation generation, i.e., 𝑠𝑖 = 0 for 𝑖 ∈ 𝐼𝑐 .
Then, the server obtains 𝑤𝑆

′
with the following value: 𝑆

′
= 𝑠𝑢𝑏 .𝐵𝑢𝑏 +

∑
𝑖∈𝐼𝑐 𝑠𝑖 .𝐵𝑖 = 𝑠𝑢𝑏 .𝐵𝑢𝑏 . The

adversary can simply try the combinations of master shares 𝑠𝑢0
and 𝑠𝑢1

with 𝐵0 and 𝐵1, respectively,

and figure out the remaining inviter’s index (in practice, the possible number of values is linear

in the number of non-colluding inviters, which is the number of registered users). This trivially

breaks inviter anonymity, which follows from the lack of ZKPOIC.

As we discussed before, due to ZKPOIC all the invitations issued for the invitee are guaranteed

to be well-structured (and their correctness are proven during 𝐼𝑔𝑒𝑛). Thus, the execution of 𝐼𝑐𝑜𝑙𝑙

by the invitee would lead to a valid invitation letter of the form 𝐼𝑛𝑣𝐿𝑒𝑡 = (𝜔𝑆+Δ, 𝑒Δ) where 𝑆 is

the server’s master value, 𝑒Δ is the encryption of 𝜔Δ
and Δ = 𝛿∗ +∑𝑖∈𝐼𝑐 𝐵𝑖 · 𝛿𝑖 + 𝐵𝑢𝑏 · 𝛿 ′ (𝛿∗ is the

masking value added by the invitee, 𝛿 ′ is the non-colluding inviter’s masking value resulted from a

PRG and 𝐵𝑢𝑏 is the Lagrange coefficient computed based on the index of the non-colluding inviter).

The adversary may get some idea about the identity of the non-colluding inviter by extracting the

Lagrange coefficients from the Δ value (Lagrange coefficients are the function of inviters’ indices).

Two cases may occur. If the random values 𝛿 ′ and 𝛿∗ are selected truly at random, then we know

that Δ is also a random value and conveys nothing about the Lagrange coefficient 𝐵𝑢𝑏 . Though, if

𝛿 ′ and 𝛿∗ are the output of a PRG then the adversary may have advantages to extract the Lagrange

coefficients. We denote the adversary’s advantage by 𝜖 . If 𝜖 is non-negligible, it implies that we can

distinguish between a PRG and a random number generator hence we break the security of the

PRG. In the following, we provide formal proof.

Theorem 6.2. Anonyma provides inviter anonymity in 𝐹𝑅
𝑃𝑂𝐼𝐶

hybrid model (as defined in Equation
40), assuming that PRG is a secure pseudo-random number generator.

Proof: We reduce the inviter anonymity of Anonyma to the security of the employed PRG. If
there exists a PPT adversary A who breaks the inviter anonymity of Anonyma with non-negligible

advantage, then we can construct a PPT adversary B who distinguishes between a random number

generator and a pseudo-random number generator with the same advantage as A. Assume A’s

success probability is

𝑃𝑟 [InvAnonymA (_) = 1] = 1

2

+ 𝜖 (_) (22)

B runs A as its subroutine to distinguish the pseudo-random number generator from the truly

random number generator. B is given a vector of values in 𝑍𝑞 denoted by

→
𝛿 = (𝛿 ′ , 𝛿 ′′) and aims

at specifying whether

→
𝛿 is selected truly at random or is the output of a PRG. B invokes A as its

subroutine and emulates the game of inviter anonymity for A as follows. If A succeeds then B

realizes that

→
𝛿 is pseudo-random, otherwise random.

(1) B is given the security parameter 1
_
and a vector of two values denoted by

→
𝛿 = {𝛿 ′ , 𝛿 ′′ } s.t.

𝛿 ′, 𝛿 ′′ ∈ 𝑍𝑞 . Adversary A outputs 𝑃𝑎𝑟𝑎𝑚 including 𝑒𝑘, 𝑣𝑘, and (𝐹0, · · · , 𝐹𝑡−1).
(2) 𝐴 registers its own users. 𝑈𝑐 contains the indices of corrupted members. Also, 𝐴 instructs B

to register users into the system. Let 𝑈ℎ indicate the set of indices registered by B. For each

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

20 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

user 𝑖 ∈ 𝑈ℎ , 𝐵 obtains a share 𝑠𝑖 and verifies its correctness by checking whether 𝑔𝑠𝑖 is equal

to

∏𝑡−1
𝑗=0 𝐹

(𝑖 𝑗)
𝑗

.

(3)(a) A outputs two indices 𝑢0, 𝑢1 ∈ 𝑈ℎ .

(b) A outputs a token 𝑇𝑜𝑘𝑒𝑛 = ([, 𝑗∗, 𝜔). 𝑗∗ is the index of the invitee in𝑈ℎ .

(c) A specifies a set of 𝑡 − 1 incides 𝐼𝑐 ⊂ 𝑈𝑐 to be the corrupted inviters. For every 𝑖 ∈ 𝐼𝑐 , and
𝑇𝑜𝑘𝑒𝑛, A engages in 𝐼𝑔𝑒𝑛 with the callenger. 𝐴 outputs 𝐼𝑛𝑣𝑖 = (𝜏𝑖 , 𝑒𝛿𝑖) and contacts 𝐹𝑅

𝑃𝑂𝐼𝐶

with the input of (𝜏𝑖 , 𝑒𝛿𝑖 , 𝛾𝑖 , 𝜔) (𝑠𝑖 , 𝑟𝑖 , 𝛿𝑖). 𝐵 acting as 𝐹𝑅
𝑃𝑂𝐼𝐶

, accepts or rejects 𝐴’s proof by

verifying whether (𝜏𝑖 , 𝑒𝛿𝑖 , 𝛾𝑖 , 𝜔) and (𝑠𝑖 , 𝑟𝑖 , 𝛿𝑖) fit into the relation 𝑅 as defined in Equation

9. Note that at this step 𝐵 can learn all the 𝑡 − 1 master shares of corrupted inviters, i.e.,

{𝑠𝑖 } for 𝑖 ∈ 𝐼𝑐 .
(4)(a) B selects a random bit 𝑏. B uses the 𝑇𝑜𝑘𝑒𝑛 and runs 𝐼𝑔𝑒𝑛 to create an invitation letter from

𝑢𝑏 as 𝐼𝑛𝑣𝑢𝑏 = (𝜏𝑢𝑏 , 𝑒𝛿𝑢𝑏) = (𝜔𝑠𝑢𝑏 +𝛿
′
, 𝐸𝑛𝑐𝑒𝑘 (𝜔𝛿

′
)) (𝛿 ′ is given from the distinguish-ability

game of PRG)).

(b) 𝐵 runs 𝐼𝑐𝑜𝑙𝑙 over {𝐼𝑛𝑣𝑖 }𝑖∈𝐼𝑐 ∪ 𝐼𝑛𝑣𝑏 , sets 𝛿∗ = 𝛿
′′
and computes

𝑇 = 𝜔𝛿∗ · 𝜏𝐵𝑢𝑏𝑢𝑏 ·
∏

𝑖∈𝐼𝑐 𝜏
𝐵𝑖

𝑖

and

𝑒Δ = 𝐸𝑛𝑐𝑒𝑘 (𝜔𝛿∗) · 𝐸𝑛𝑐𝑒𝑘 (𝜔𝛿
′
)𝐵𝑢𝑏 ·∏𝑖∈𝐼𝑐 𝑒𝛿

𝐵𝑖

𝑖
.

The value of 𝑒Δwill be equal to 𝐸𝑛𝑐𝑒𝑘 (𝜔𝛿∗+𝛿 ′ ·𝐵𝑢𝑏 +
∑

𝑖∈𝐼𝑐 𝛿𝑖 ·𝐵𝑖). 𝐵𝑖 and 𝐵𝑢𝑏 denote the Lagrange
coefficients as defined in Equation 4. B submits 𝐼𝑛𝑣𝐿𝑒𝑡 = (𝑇, 𝑒Δ) to the adversary A.

(5) A outputs a bit 𝑏
′
.

(6) If 𝑏 = 𝑏
′
then B outputs 0, otherwise 1.

Note that 𝐵 follows all the steps as indicated in the InvAnonymA (_) game and hence is indis-

tinguishable from a real challenger. This means that 𝐵 also runs in polynomial time (as there is

no rewind). 𝐵 ties the InvAnonymA (_) game to the security of PRG by embedding 𝛿 ′ and 𝛿
′′
(the

challenge of PRG game) as the randomness 𝛿𝑢𝑏 (used by the non-colluding inviter for the invitation

generation), and the value of 𝛿∗ (used by the invitee in 𝐼𝑐𝑜𝑙𝑙 execution), respectively. Below is the

success probability analysis of the reduction.

Let

→
𝛿 be a truly random vector. Once the adversary decrypts 𝑒Δ he obtains

𝜔𝛿
′′+Γ

where

Γ = 𝛿
′ · 𝐵𝑢𝑏 +

∑𝑡−1
𝑖=1 𝛿𝑖 · 𝐵𝑖

Γ is a function of inviters indices due to the presence of Lagrange coefficients whereas 𝛿
′′
is a

random value completely independent of inviters’ indices. If

→
𝛿 is a random vector then 𝛿

′′
is

also a random value from Z𝑞 . Therefore, in 𝜔
𝛿
′′+Γ

, Γ is indeed masked with 𝛿
′′
(𝛿
′′ + Γ mod 𝑞 is a

completely random element of Z𝑞). By this masking, Δ (i.e., 𝛿
′′ +Γ) becomes completely independent

of the Lagrange coefficients and A has no advantage to infer the identity of the uncorrupted inviter.

Thus, A’s advantage is exactly
1

2
i.e.,

𝑃𝑟 [𝐵(
→
𝛿 ← 𝑍𝑞) = 1] = 𝑃𝑟 [𝑏 = 𝑏

′] = 1

2

(23)

but if

→
𝛿 is the output of a PRG then

𝑃𝑟 [𝑟 ← {0, 1}_ : 𝐵(
→
𝛿 = 𝑃𝑅𝐺 (𝑟)) = 1] = 𝑃𝑟 [𝑏 = 𝑏

′] = 1

2

+ 𝜖 (_) (24)

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 21

where
1

2
+𝜖 (_) is the success probability of A (as assumed in our proof in Equation 22). By combining

Equations 23 and 24 we have

|𝑃𝑟 [𝑟 ← {0, 1}_ : 𝐵(
→
𝛿 = 𝑃𝑅𝐺 (𝑟)) = 1] − 𝑃𝑟 [𝐵(

→
𝛿 ← 𝑍𝑞) = 1] | = 𝜖 (_) (25)

Equation 25 corresponds to the security definition of PRG (see Equation 1). Thus, if 𝜖 (_) is non-
negligible, then the distinguisher B can distinguish a PRG from a random generator. This contradicts

with the security definition of PRG. Therefore, 𝜖 (_) must be negligible according to the PRG
definition. This concludes the security proof of inviter anonymity of Anonyma. ■

6.2 Invitation Unforgeability
In an invitation-based system, the invitation unforgeability indicates that people who do not have

enough inviters (less than 𝑡) should not be able to join the system. Hence, no adversary can forge

invitations on his own. Unforgeability results from the fulfillment of the following properties,

namely, the invitation non-exchangability and prevention of double-invitations. The former means

that invitations are bound to their invitee and are not exchangable from one to another while the

latter indicates that an inviter is only able to make one single (and not more) valid invitation for

each invitee. Next, we present a formal definition for invitation unforgeability, as well as the said

constituent properties, together with a formal security proof of Anonyma.

6.2.1 Security Definition: We define the following game denoted by 𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) running
between a challenger and an adversary. The adversary controls a set of 𝑡 − 1 members who can

adaptively register with the system. The rest of the users denoted by 𝐼ℎ are controlled by the

challenger. Also, the adversary has oracle access to the token generation 𝑇𝑔𝑒𝑛(𝑠𝑘, 𝑛), invitation
generation 𝐼𝑔𝑒𝑛(., 𝑠𝑖 , 𝑃𝑎𝑟𝑎𝑚) for 𝑖 ∈ 𝐼ℎ , and invitation verification 𝐼𝑣𝑟 𝑓 𝑦 (., ., 𝑃𝑎𝑟𝑎𝑚,𝑑𝑘) algorithms.

Finally, the adversary wins the game if it manages to register to the system successfully, using a

token that was not queried from the invitation generation oracle. The success of the adversary

asserts that the invitations are forgeable. Otherwise, the system provides invitation unforgeability.

We remark that by giving the adversary oracle access to the invitation generation algorithm we

aim to capture the non-exchangability of invitations. This oracle access is equivalent to having an

adversary who eavesdrops on the communication of other invitees and inviters and wishes to forge

an invitation over its token. The prevention of double-invitations is modeled in the fact that the

adversary has the control of 𝑡 − 1 inviters and can internally execute their invitation generation

function any number of times to possibly make a double-invitation.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

22 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

Invitation Unforgeability experiment 𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) :
(1) The challenger runs the setup algorithm and outputs 𝑃𝑎𝑟𝑎𝑚 to the adversary. Learn-

ing phase: The next steps (2-5) are the learning phase of the adversary and can be

run in an arbitrary order.

(2)(a) The adversary registers 𝑡 − 1 users to the system adaptively, at any phase of the

game, via 𝑅𝑒𝑔 protocol. 𝐼𝑐 denotes the index set of registered corrupted members.

(b) The adversary instructs the challenger to register honest users to the system. 𝐼ℎ
contains the index of registered honest members.

(3) The adversary asks the challenger to issue a token, polynomially many times. 𝑄𝑇𝑜𝑘𝑒𝑛

holds the set of tokens queried by the adversary.

(4) The adversary queries invitation verification function on the invitations of his own

choice. The challenger runs the 𝐼𝑣𝑟 𝑓 𝑦 algorithm and responds accordingly. This step

can be repeated polynomially many times.

(5) The adversary has oracle access to the 𝐼𝑔𝑒𝑛 algorithm. That is, the adversary asks the

challenger to use a particular token and generate an invitation from an honest member.

As such, the adversary specifies the index 𝑖 ∈ 𝐼ℎ of an honest member together with

a valid 𝑇𝑜𝑘𝑒𝑛 𝑗 ∈ 𝑄𝑇𝑜𝑘𝑒𝑛
. Then, the challenger issues an individual invitation by

running 𝐼𝑛𝑣𝑖, 𝑗 = 𝐼𝑔𝑒𝑛(𝑇𝑜𝑘𝑒𝑛 𝑗 , 𝑠𝑖 , 𝑃𝑎𝑟𝑎𝑚) and gives the output to the adversary. Let

𝑄 𝐼𝑛𝑣 = {(𝑇𝑜𝑘𝑒𝑛 𝑗 , 𝐼𝑛𝑣𝑖, 𝑗)} be the set of tokens together with the individual invitations

queried by the adversary. This step can be repeated polynomially many times.

Challenge phase:
(6) The adversary outputs an invitation letter 𝐼𝑛𝑣𝐿𝑒𝑡 for a valid token 𝑇𝑜𝑘𝑒𝑛

′ ∈ 𝑄𝑇𝑜𝑘𝑒𝑛

for which no query exists in 𝑄 𝐼𝑛𝑣
.

(7) If the output of 𝐼𝑣𝑟 𝑓 𝑦 (𝐼𝑛𝑣𝐿𝑒𝑡,𝑇𝑜𝑘𝑒𝑛′ , 𝑃𝑎𝑟𝑎𝑚,𝑑𝑘) is accepted then the game’s output

is 1 indicating the adversary’s success, 0 otherwise.

Definition 6.3. An invitation-based system has invitation unforgeability if for every probabilistic

polynomial time adversary 𝐴 there exists a negligible function 𝑛𝑒𝑔𝑙 (.) such that:

𝑃𝑟 [𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) = 1] = 𝑛𝑒𝑔𝑙 (_)
At a high level, in order for the adversary to be able to win the game, it has to compute 𝜔∗𝑆

for some token 𝑇𝑜𝑘𝑒𝑛′ = (𝜏, 𝑗, 𝜔∗) where 𝑇𝑜𝑘𝑒𝑛′ does not belong to 𝑄 𝐼𝑛𝑣
. Through the oracle

accesses, the adversary learns a set of individual invitations 𝑄 𝐼𝑛𝑣 = {(𝑇𝑜𝑘𝑒𝑛 𝑗 , 𝐼𝑛𝑣𝑖, 𝑗)} where
𝐼𝑛𝑣𝑖, 𝑗 = (𝜏𝑖, 𝑗 = 𝜔

𝑠𝑖+𝛿𝑖,𝑗
𝑗

, 𝑒𝛿𝑖, 𝑗 = 𝐸𝑛𝑐𝑒𝑘 (𝜔
𝛿𝑖,𝑗
𝑗
)). The 𝐼𝑛𝑣𝑖, 𝑗 carries no useful information regarding the

master value 𝑆 to the adversary as the master share 𝑠𝑖 is masked through a random value 𝛿𝑖, 𝑗 . There

is no way for the adversary to get to learn 𝛿𝑖, 𝑗 unless with decryption of 𝑒𝛿𝑖, 𝑗 which is not possible

as the adversary lacks the decryption key 𝑑𝑘 . Alternatively, the adversary may attempt to combine

invitations issued under different tokens to obtain a valid invitation under a new token𝑇𝑜𝑘𝑒𝑛′. This
is impossible due to the CDH problem. That is, given 𝜏𝑖, 𝑗 (= 𝜔

𝑠𝑖+𝛿𝑖,𝑗
𝑗

) and 𝜔∗(= 𝑔𝑥), the adversary
must compute 𝜏𝑥𝑖,𝑗 which corresponds to a solution to the CDH problem. Similarly, the knowledge

of 𝜔∗ and 𝐹0 = 𝑔𝑆 (from 𝑃𝑎𝑟𝑎𝑚) does not help in making a valid invitation letter since computing

𝜔∗𝑆 is equivalent to solving the CDH problem. That is, given 𝜔∗ = 𝑔𝑥 and 𝐹0 = 𝑔
𝑆
, the adversary

shall compute 𝑔𝑥 ·𝑆 = 𝜔𝑆
. In the theorem and proof given below, we reduce 𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) game

to the CDH problem.

Theorem 6.4. Anonyma satisfies invitation unforgeability as defined in Definition 6.3, in 𝐹𝑅
𝑃𝑂𝐼𝐶

hybrid model, given that the signature scheme 𝑆𝑖𝑔 is existentially unforgeable under chosen message

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 23

attack, the encryption scheme 𝜋 is CPA secure, and Computational Diffie-Hellman problem is hard
relative to group 𝐺 .

Proof: If there exists a PPT adversary 𝐴 who breaks the invitation unforgeability with the

non-negligible advantage then we can construct a PPT adversary 𝐵 who solves the CDH problem

with non-negligible advantage.

Let 𝜖 denote the probability of success of 𝐴. 𝐵 interacts with the CDH challenger and also runs

𝐴 as its subroutine. 𝐵 is given 𝐺,𝑞, 𝑔, 𝑋 = 𝑔𝑥 , 𝑌 = 𝑔𝑦 ∈ 𝐺 for which 𝐵 is supposed to compute

𝑍 = 𝑔𝑥 ·𝑦 .

(1) 𝐵 runs the setup algorithm and generates the encryption and signature key pairs (𝑒𝑘, 𝑑𝑘)
(𝑠𝑘, 𝑣𝑘) as normal. To set up Shamir secret sharing scheme, 𝐵 performs as follows. 𝐵 sets

𝐹0 = 𝑌 (recall that 𝐹0 is the commitment to master value 𝑆 thus 𝐹0 = 𝑔
𝑓 (0) = 𝑔𝑆 ; this implies

that 𝐵 does not know the master value 𝑆 since it is the discrete logarithm of 𝑌 (i.e., 𝑦), which

is selected by the CDH challenger). 𝐵 selects a set denoted by 𝐼𝑐 consisting of 𝑡 − 1 random
indices to be the indices of the members that are to be registered by the adversary. That

is, whenever the adversary attempts to register a corrupted member via 𝑅𝑒𝑔 protocol, 𝐵

uses one of the indices in the 𝐼𝑐 for the registration. This is only needed for 𝐵 to prepare

the system parameters i.e., commitments to the Shamir coefficients, however, this act is

not visible to the adversary, hence adversary’s view would remain indistinguishable from

a real game, as the index of the members it registers to the system are still random (this

aligns with the original protocol in which indices are random values calculated as the hash

of the total number of issued tokens). 𝐵 selects 𝑡 − 1 random values 𝑠𝑖∈𝐼𝑐 ← 𝑍𝑞 to be the

master shares of the corrupted members. Also, 𝐵 computes 𝛾𝑖 = 𝑔
𝑠𝑖
for 𝑖 ∈ 𝐼𝑐 . Recall that

the share of the master value for the 𝑖𝑡ℎ user is 𝑓 (𝑖), thus by setting the master shares of

corrupted parties, 𝐵 fixes 𝑡 − 1 points of polynomial 𝑓 as 𝑓 (𝑖) = 𝑠𝑖 for 𝑖 ∈ 𝐼𝑐 . These 𝑡 − 1

points together with 𝐹0, which is indeed 𝑔𝑓 (0) , will fix polynomial 𝑓 since the degree of 𝑓

is 𝑡 − 1. Next, 𝐵 interpolates 𝑌 i.e., (𝑔𝑓 (0)) and {(𝑖, 𝛾𝑖)}𝑖∈𝐼𝑐 , and computes the commitments

𝐹1, · · · , 𝐹𝑡−1 (where 𝐹1 = 𝑔𝑎1 , · · · , 𝐹𝑡−1 = 𝑔𝑎𝑡−1) over the coefficients of polynomial 𝑓 [60]

(where 𝑓 = 𝑆 + 𝑎1 · 𝑥 + ... + 𝑎𝑡−1 · 𝑥𝑡−1).
Note that 𝐵 does not obtain the exact coefficients of the polynomial 𝑓 (i.e., 𝑎𝑖 values) but

only computes the commitments 𝐹𝑖 = 𝑔
𝑎𝑖
. This is sufficient for 𝐵 to simulate the role of the

server since it only needs to publish the commitments of the polynomial and not the exact

coefficients.

𝐵 outputs 𝑝𝑎𝑟𝑎𝑚 = (𝐺,𝑞, 𝑔, 𝑒𝑘, 𝑣𝑘, (𝐹0, ..., 𝐹𝑡−1)), as well as the security parameter 1
_
. Note

that 𝐵 also records the master shares of corrupted members i.e., {(𝑖, 𝑓 (𝑖))}𝑖∈𝐼𝑐 to use in the

registration phase.

(2)(a) 𝐴 registers a corrupted user to the system. 𝐵 picks one of the elements in 𝐼𝑐 and its

corresponding share which were both computed during the setup protocol to 𝐴.

(b) 𝐴 instructs 𝐵 to register an honest user to the system. Note that 𝐵 cannot generate the

master shares of honest users since it does not know the coefficients of the function 𝑓 .

However, since it is a local calculation for 𝐵, this shortage remains unnoticed to𝐴. 𝐵 assigns

a random index to the honest user and adds it to the 𝐼ℎ .

(3) 𝐴 has oracle access to the token generation 𝑇𝑔𝑒𝑛. Initially, 𝐵 draws a random value 𝑞∗ ∈
[1, 𝑃 (_)] where 𝑃 (_) is the upper bound on the number of adversary’s queries to 𝑇𝑔𝑒𝑛. 𝐵

answers the queries of 𝐴 for 𝑇𝑔𝑒𝑛 as follows. For the 𝑞∗𝑡ℎ query, picks a random index 𝑗∗

that does not belong to 𝐼𝑐 and 𝐼ℎ , 𝐵 sets 𝑇𝑜𝑘𝑒𝑛∗ = (𝑆𝑖𝑔𝑛𝑠𝑘 (𝑗∗ | |𝑋), 𝑗∗, 𝑋) (𝑋 was given to 𝐵

from the CDH game) and inserts (𝑗∗, 𝑋,⊥) into 𝑄𝑇𝑜𝑘𝑒𝑛
. Otherwise, 𝐵 selects a random index

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

24 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

𝑗 ∉ 𝐼𝑐 ∪ 𝐼ℎ , and a random 𝑟 𝑗 ∈𝑅 𝑍𝑞 , sets 𝜔 𝑗 = 𝑔
𝑟 𝑗
and outputs 𝑇𝑜𝑘𝑒𝑛 𝑗 = (𝑆𝑖𝑔𝑛𝑠𝑘 (𝑗 | |𝜔 𝑗), 𝑗, 𝜔 𝑗).

𝐵 records (𝑗, 𝜔 𝑗 , 𝑟 𝑗) inside 𝑄𝑇𝑜𝑘𝑒𝑛
.

(4) The adversary queries the invitation verification function on the invitation letters and tokens

of his own choice i.e., 𝐼𝑛𝑣𝐿𝑒𝑡 = (𝑇, 𝑒Δ) and𝑇𝑜𝑘𝑒𝑛 = ([, 𝑗, 𝜔 𝑗). 𝐵 first authenticates the token

against the signature verification key. If not verified, 𝐵 outputs 𝑟𝑒 𝑗𝑒𝑐𝑡 to 𝐴, otherwise,

• If 𝑇𝑜𝑘𝑒𝑛 == 𝑇𝑜𝑘𝑒𝑛∗, then 𝐵 aborts the experiment.

• If 𝑇𝑜𝑘𝑒𝑛 ≠ 𝑇𝑜𝑘𝑒𝑛∗, 𝐵 proceeds as follows. Due to the lack of master value 𝑆 , 𝐵 has to

run different than the normal 𝐼𝑣𝑟 𝑓 𝑦 algorithm. 𝐵 decrypts 𝑒Δ as 𝜔Δ
𝑗 = 𝐷𝑒𝑐𝑑𝑘 (𝑒Δ). Next,

𝐵 retrieves the record of (𝑗, 𝜔 𝑗 , 𝑟 𝑗) corresponding to 𝜔 𝑗 from 𝑄𝑇𝑜𝑘𝑒𝑛
and checks whether

𝐹
𝑟 𝑗
0
· 𝜔Δ

𝑗

?

= 𝑇 and responds to A accordingly. The right side of this equality check is the

same as line 3 of 𝐼𝑣𝑟 𝑓 𝑦 Algorithm (Algorithm 3.4) since

𝐹
𝑟 𝑗
0
· 𝜔Δ

𝑗 = 𝑔𝑆 ·𝑟 𝑗 · 𝜔Δ
𝑗 = 𝑔𝑟 𝑗 ·𝑆 · 𝜔Δ

𝑗 = 𝜔𝑆
𝑗 · 𝜔Δ

𝑗 (26)

(5) 𝐴 has oracle access to 𝐼𝑔𝑒𝑛 algorithm. 𝐴 outputs an index 𝑖 of an honest member together

with a 𝑇𝑜𝑘𝑒𝑛 𝑗 = ([, 𝑗, 𝜔 𝑗). 𝐵 first authenticates the token against the signature verification

key. If successful, then, it attempts to issue an invitation. Notice that 𝐵 cannot generate the

invitation by following 𝐼𝑔𝑒𝑛 since it does not have the master share of honest users i.e., 𝑠𝑖
for 𝑖 ∈ 𝐼ℎ . 𝐵 performs differently to compute a valid invitation as explained next. 𝐵 retrieves

the record (𝑗, 𝜔 𝑗 , 𝑟 𝑗) from 𝑄𝑇𝑜𝑘𝑒𝑛
(if the token is valid and has a correct signature from the

server then it must be already queried by the adversary and hence should exist in 𝑄𝑇𝑜𝑘𝑒𝑛
,

otherwise, the signature forgery happens which is not possible due to the security of the

underlying signature scheme). 𝐵 computes 𝛾𝑖 =
∏𝑡

𝑗=0 𝐹
𝑖 𝑗

𝑗 as well as selects a random value

𝛿𝑖 ∈𝑅 𝑍𝑞 . Then, 𝐵 constructs 𝜏𝑖, 𝑗 = 𝛾
𝑟 𝑗
𝑖
· 𝑔𝛿𝑖 ·𝑟 𝑗 where 𝑟 𝑗 is the discrete logarithm of 𝜔 𝑗 in base

𝑔. It is immediate that 𝜏𝑖, 𝑗 is well-structured since

𝜏𝑖, 𝑗 = 𝛾
𝑟 𝑗
𝑖
· 𝑔𝛿𝑖 ·𝑟 𝑗 = (𝑔𝑠𝑖)𝑟 𝑗 · (𝑔𝛿𝑖) ·𝑟 𝑗 = (𝑔𝑟 𝑗)𝑠𝑖 · (𝑔𝑟 𝑗)𝛿𝑖 = 𝜔𝑠𝑖

𝑗
· 𝜔𝛿𝑖

𝑗
= 𝜔

𝑠𝑖+𝛿𝑖
𝑗

(27)

𝐵 constructs 𝑒𝛿𝑖, 𝑗 as 𝐸𝑛𝑐𝑒𝑘 (𝜔𝛿𝑖
𝑗
) and outputs 𝐼𝑛𝑣𝑖, 𝑗 = (𝜏𝑖, 𝑗 , 𝑒𝛿𝑖, 𝑗) to 𝐴.

Finally, 𝐵 acts as 𝐹𝑅
𝑃𝑂𝐼𝐶

and waits for 𝐴’s message asking verification of (𝜏𝑖, 𝑗 , 𝑒𝛿𝑖, 𝑗 , 𝛾𝑖 , 𝜔 𝑗) for
which 𝐵 responds 𝑎𝑐𝑐𝑒𝑝𝑡 to 𝐴. 𝐵 keeps the set of individual invitations and their tokens

queried by 𝐴 in 𝑄 𝐼𝑛𝑣 = {(𝑇𝑜𝑘𝑒𝑛 𝑗 , 𝐼𝑛𝑣𝑖, 𝑗)}.
(6) The adversary outputs an invitation letter 𝐼𝑛𝑣𝐿𝑒𝑡 = (𝑇, 𝑒Δ) for a token 𝑇𝑜𝑘𝑒𝑛′ for which no

query has been made from 𝐼𝑔𝑒𝑛 i.e., 𝑇𝑜𝑘𝑒𝑛
′
∉ 𝑄 𝐼𝑛𝑣

.

(7) 𝐵 verifies whether the 𝑇𝑜𝑘𝑒𝑛
′
is correctly signed under 𝑠𝑘 . If not, 𝐵 outputs ⊥ to CDH

challenger. Otherwise:

• If 𝑇𝑜𝑘𝑒𝑛
′
≠ 𝑇𝑜𝑘𝑒𝑛∗, 𝐵 outputs ⊥ to the CDH game.

• If 𝑇𝑜𝑘𝑒𝑛
′
== 𝑇𝑜𝑘𝑒𝑛∗, 𝐵 outputs 𝑇 · 𝐷𝑒𝑐𝑑𝑘 (𝑒Δ)−1 to the CDH challenger. In fact, if 𝐴

constructs 𝐼𝑛𝑣𝐿𝑒𝑡 correctly, we expect that 𝑇 = 𝜔∗𝑆+Δ and 𝑒Δ = 𝐸𝑛𝑐 (𝜔∗Δ). Given that

𝑋 = 𝑔𝑥 = 𝜔∗ and 𝑌 = 𝑔𝑦 = 𝑔𝑆 , we have

𝑇 · 𝐷𝑒𝑐𝑑𝑘 (𝑒Δ)−1 = (𝜔∗)𝑆+Δ · (𝜔∗)Δ
−1

= (𝜔∗)𝑆 = (𝑔𝑥)𝑦 = 𝑔𝑥𝑦 (28)

𝑔𝑥.𝑦 is the solution to the given CDH problem.

This is immediate that 𝐵 runs in polynomial time. The index 𝑞∗ chosen by 𝐵 at step 3 represents a

guess as to which 𝑇𝑔𝑒𝑛 oracle query of 𝐴 will correspond to the token of eventual invitation letter

forgery output by 𝐴. If this guess is correct, then 𝐴’s view while running with 𝐵 is identical to

𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) game.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 25

When 𝐵 guesses correctly and 𝐴 outputs a forgery, then 𝐵 can solve the given instance of CDH.

Assume that 𝐴’s advantage in 𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) game is 𝜖 . The probability that 𝐵 wins is

𝑃𝑟 [B wins] = 𝑃𝑟 [𝐵(𝐺,𝑞, 𝑔, 𝑋 = 𝑔𝑥 , 𝑌 = 𝑔𝑦) = 𝑔𝑥 ·𝑦] (29)

= 𝑃𝑟 [A wins ∧ (𝑇𝑜𝑘𝑒𝑛′ = 𝑇𝑜𝑘𝑒𝑛∗)]
= 𝑃𝑟 [A wins |𝑇𝑜𝑘𝑒𝑛′ = 𝑇𝑜𝑘𝑒𝑛∗] · 𝑃𝑟 [𝑇𝑜𝑘𝑒𝑛′ = 𝑇𝑜𝑘𝑒𝑛∗]

≥ 𝜖 · 1

𝑃𝑜𝑙𝑦 (_)
The last equality holds since the number of queries made by 𝐴 is at most 𝑃 (_) (𝑃 is polynomial in

1
_
), hence, the probability𝑇𝑜𝑘𝑒𝑛∗ = 𝑇𝑜𝑘𝑒𝑛

′
is

1

𝑃𝑜𝑙𝑦 (_) . Note that due to the signature unforgeability,

𝐴 cannot create a valid token outside of the set of queried tokens i.e., ∉ 𝑄𝑇𝑜𝑘𝑒𝑛
.

Assuming that 𝜖 is non-negligible, 𝐵 also wins with non-negligible probability. This contradicts

the hardness of the CDH problem. Hence 𝐴’s success probability in 𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) must be

negligible. This concludes the proof. ■

6.3 Security of AnonymaX
6.3.1 Inviter Anonymity. The inviter anonymity of AnonymaX can be defined identically to the

experiment of InvAnonymA (_). The challenger shall control the honest members, i.e.𝑈ℎ and invitee

whereas the adversary will have the control of the authenticating server AN and all the registration
servers RN𝑗 together with the corrupted members 𝐼𝑐 which constitute 𝑡 − 1 inviters of the honest
invitee.AnonymaX meets inviter anonymity due to the similar proof supplied forAnonyma. Without

loss of generality and for the sake of simplicity, we consider only one registration server to exist,

though the extension of proof for multiple registration servers is straightforward. In particular, the

following theorem holds for AnonymaX with one authenticating server and one registration server.

Theorem 6.5. AnonymaX provides inviter anonymity in 𝐹𝑅
𝑃𝑂𝐼𝐶

hybrid model (as defined in Equation
40), assuming that the encryption scheme 𝜋 is CPA-secure and the utilized PRG is a secure pseudo-
random number generator.

Proof Sketch: Given that a PPT adversary 𝐴′ can break the inviter anonymity game for

AnonymaX with non-negligible advantage, we can construct an adversary 𝐵′ to distinguish

between a PRG and a truly random number generator. The internal code of adversary 𝐵′ shall
be identical to the simulator 𝐵 in proof of Theorem 6.2. The sole distinction lies in the 𝑆𝑒𝑡𝑈𝑝

phase, where the challenger generates two encryption keys, 𝑒𝑘RN and 𝑒𝑘AN for the registration and

authenticating servers respectively. However, in the experiment, only 𝑒𝑘RN will be utilized.

6.3.2 Invitation Unforgeability. Invitation unforgeability guarantees that a corrupted invitee with

an insufficient number of inviters would not be able to join the system. In a cross-network invitation-

based system, the invitation unforgeability should additionally hold for the registration service.

That is, if Alice does not have enough inviters from the authenticating system, she should not be

able to successfully register to the registration service.

It is important to acknowledge that invitation unforgeability cannot be defined in a cross-network

invitation-based systemwhenAN acts againstRN. In this scenario,AN can generate valid invitations

for the invitee of its choice to join the registration service. This becomes trivial since AN can register

an arbitrary number of users into its own system (authenticating system). Consequently, any subset

of 𝑡 registered users within the authenticating service will have the ability to issue invitations and

register an arbitrary number of users into the registration service. It is essential to recognize that

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

26 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

this limitation is not specific to our design but is inherent in any cross-network invitation-based

system.

In the invitation unforgeability game as defined in𝑋𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) , we consider 𝑁 registration
servers which all accept invitations from the members of one authenticating server. The adversary

plays on behalf of 𝑡 − 1 corrupted users of the authenticating service and a subset of registration
servers. The challenger controls the honest users, i.e. 𝐼ℎ of the authenticating service together with

AN and some of the uncorrupted registration servers. At the end of the game, the mission of the

adversary as a corrupted invitee with an insufficient number of inviters is to successfully register

to one of the honest registration servers RN𝑗∗ controlled by the challenger.

Invitation Unforgeability experiment for cross-network invitation based system: In

𝑋𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) , we index registration servers as RN𝑗 , where 1 ≤ 𝑗 ≤ 𝑁 , and the authenticating
server as AN. The set of servers controlled by the adversary is denoted as set 𝐶 . We assume 𝐻

indicates the set of un-corrupted registration servers. The set of members of authenticating service

is denoted by𝑈AN. 𝐼𝑐 represents the set of 𝑡 − 1 corrupted members in the authenticating service
whereas 𝐼ℎ contains the indices of the honest members. We have 𝑈AN = 𝐼ℎ ∪ 𝐼𝑐 . We prefix the

algorithms with its executing entity, e.g. we write RN𝑗 .𝑇𝑔𝑒𝑛 to show the invocation of the token

generation algorithm at the registration server 𝑗 .

Invitation Unforgeability experiment 𝑋𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) for cross-network invita-
tion based system:

(1) The challenger runs 𝑆𝑒𝑡𝑢𝑝 for all RN𝑗 ∈ 𝐻 and outputs 𝑃𝑎𝑟𝑎𝑚RN𝑗
to the adversary.

The adversary outputs 𝑃𝑎𝑟𝑎𝑚RN𝑗
for RN𝑗 ∈ 𝐶 .

Learning Phase: The next steps (2-5) are the learning phase of the adversary and

can be run in an arbitrary order.

(2)(a) The adversary registers a corrupted user 𝑖 to the authenticating system. The adver-

sary repeats this part 𝑡 − 1 times. Let 𝐼𝑐 denote the index of corrupted registered

members.

(b) The adversary instructs the challenger to register an honest user 𝑖 to the authenti-
cating system where 𝑖 ∈ 𝐼ℎ .

(3) The adversary has Oracle access to the RN𝑗 .𝑇𝑔𝑒𝑛 for RN𝑗 ∈ 𝐻 . Also, the adversary
generates a𝑇𝑜𝑘𝑒𝑛 for a user 𝑖 ∈ 𝐼ℎ from RN𝑗 where RN𝑗 ∈ 𝐶 and hands it over to the

challenger.

(4) The adversary has oracle access to RN𝑗 .𝑋 𝐼𝑣𝑟 𝑓 𝑦 for RN𝑗 ∈ 𝐻 .
(5) The adversary has oracle access to the 𝐼𝑔𝑒𝑛 algorithm. That is, the adversary specifies

the index 𝑙 of an honest member i.e., 𝑙 ∈ 𝐼ℎ and a server RN𝑗 ∈ 𝐻 ∪𝐶 together with a

𝑇𝑜𝑘𝑒𝑛 issued by RN𝑗 .

The challenger generates an individual invitation by running 𝐼𝑛𝑣𝑙 =

𝐼𝑔𝑒𝑛(𝑇𝑜𝑘𝑒𝑛, 𝑠𝑙 , 𝑃𝑎𝑟𝑎𝑚 𝑗) and gives the output 𝐼𝑛𝑣𝑙 to the adversary. Let

𝑄 𝐼𝑛𝑣
RN𝑗

= {(𝑇𝑜𝑘𝑒𝑛, 𝐼𝑛𝑣𝑙)} be the set of tokens together with the individual in-

vitations queried by the adversary to be generated by the 𝑙𝑡ℎ user for the 𝑗𝑡ℎ

registration service.

(6) Challenge Phase: The adversary outputs an invitation letter 𝐼𝑛𝑣𝐿𝑒𝑡 together with

token 𝑇𝑜𝑘𝑒𝑛
′
for the registration in RN𝑗∗ server where RN𝑗∗ ∈ 𝐻 . There should not

be any issued invitation using 𝑇𝑜𝑘𝑒𝑛
′
in 𝑄 𝐼𝑛𝑣

RN𝑗∗
.

(7) If the output of 𝑋𝐼𝑣𝑟 𝑓 𝑦 (𝐼𝑛𝑣𝐿𝑒𝑡,𝑇𝑜𝑘𝑒𝑛′ , 𝑃𝑎𝑟𝑎𝑚AN, 𝑃𝑎𝑟𝑎𝑚RN𝑗∗ , 𝑑𝑘RN𝑗∗) is accepted,

then the game’s output is 1 indicating the adversary’s success, 0 otherwise.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 27

Definition 6.6. A cross-network invitation-based system has invitation unforgeability if for every

probabilistic polynomial time adversary 𝐴 there exists a negligible function 𝑛𝑒𝑔𝑙 (.) such that:

𝑃𝑟 [𝑋𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) = 1] = 𝑛𝑒𝑔𝑙 (_)

Theorem 6.7. AnonymaX satisfies invitation unforgeability as defined in Definition 6.6, in 𝐹𝑅
𝑃𝑂𝐼𝐶

and 𝐹𝑅
𝑃𝑂𝐷𝐿

hybrid model, given that the signature scheme 𝑆𝑖𝑔 is existentially unforgeable under chosen
message attack, and Computational Diffie-Hellman problem is hard relative to group 𝐺 .

Proof Sketch, The reduction idea between CDH problem and 𝑋𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) of AnonymaX
is similar to 𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) . However, in AnonymaX , the simulator 𝐵 additionally can extract the

CDH solution during the 𝑇𝑔𝑒𝑛 and 𝑋𝐼𝑣𝑟 𝑓 𝑦 which we explain below. 𝐵 is given 𝑋 = 𝑔𝑥 and 𝑌 = 𝑔𝑦

from the CDH challenger and sets 𝑌 as the commitment to the master value 𝑆 . 𝐵 also guesses at

which query of𝑇𝑔𝑒𝑛 𝐴 will succeed to forge a valid 𝐼𝑛𝑣𝐿𝑒𝑡 . 𝐵 sets the value 𝜔 of that token to 𝑋 . 𝐵

can solve the CDH challenge if

• 𝐴 creates a token with the value of 𝑋 for which 𝐴 must prove the knowledge of the discrete

logarithm 𝑥 . Then 𝐵 outputs 𝑌𝑥
as the CDH solution.

• The adversary 𝐴 queries 𝑋𝐼𝑣𝑟 𝑓 𝑦 with a valid invitation letter 𝐼𝑛𝑣𝐿𝑒𝑡 over the token with

𝜔 = 𝑋 , then 𝐵 extracts the CDH solution. The 𝐼𝑛𝑣𝐿𝑒𝑡 is of the form 𝜔𝑆 = 𝑔𝑥𝑦 which is the

solution to the CDH problem.

• 𝐴 submits a valid invitation letter using the token 𝑋 . That is of the form 𝜔𝑆 = 𝑔𝑥𝑦 which is

the solution to the CDH problem.

𝐴 may also win by forging a token (i.e., a signature) on behalf of an honest registration server.

However, since the signature scheme is secure, the probability of signature forgery is negligible.

Formal Proof: If there exists a PPT adversary 𝐴 who breaks the invitation unforgeability of

AnonymaX with non-negligible advantage, then we can construct a PPT adversary 𝐵 who solves

the CDH problem with non-negligible advantage.

Let 𝜖 denote the probability of success of 𝐴. 𝐵 interacts with the CDH challenger and also runs

𝐴 as its subroutine. 𝐵 is given the security parameter 1
_
, 𝐺,𝑞, 𝑔, 𝑋 = 𝑔𝑥 , 𝑌 = 𝑔𝑦 ∈ 𝐺 for which 𝐵 is

supposed to compute 𝑍 s.t. 𝑍 = 𝑔𝑥 ·𝑦 .

(1) For every RN𝑗 ∈ 𝐻 , 𝐵 runs the setup algorithm and generates the encryption and signature

key pairs (𝑒𝑘RN𝑗
, 𝑑𝑘RN𝑗

) (𝑠𝑘RN𝑗
, 𝑣𝑘RN𝑗

) as normal. 𝑃𝑎𝑟𝑎𝑚RN𝑗
will be (𝑒𝑘RN𝑗

, 𝑣𝑘RN𝑗
).

Similarly, 𝐵 sets up an encryption and signature key pairs for AN as (𝑒𝑘AN, 𝑑𝑘AN) and
(𝑠𝑘AN, 𝑣𝑘AN), respectively. As for the initialization of the Shamir secret sharing scheme, 𝐵

performs as follows. 𝐵 sets 𝐹0 = 𝑌 (recall that 𝐹0 is the commitment to master value 𝑆 thus

𝐹0 = 𝑔
𝑓 (0) = 𝑔𝑆 ; this implies that 𝐵 does not know the master value 𝑆 since it is the discrete

logarithm of 𝑌 (i.e., 𝑦), which is selected by the CDH challenger). 𝐵 selects 𝑡 − 1 random

index 𝑖 as the index of corrupted members and saves them in 𝐼𝑐 . It also draws random values

𝑠𝑖∈𝐼𝑐 ← 𝑍𝑞 to be the master shares of the corrupted members. Also, 𝐵 computes 𝛾𝑖 = 𝑔𝑠𝑖

for 𝑖 ∈ 𝐼𝑐 . Recall that the share of the master value for the 𝑖𝑡ℎ user is 𝑓 (𝑖), thus by setting

the master shares of corrupted parties, 𝐵 fixes 𝑡 − 1 points of polynomial 𝑓 as 𝑓 (𝑖) = 𝑠𝑖 for
𝑖 ∈ 𝐼𝑐 . These 𝑡 − 1 points together with 𝐹0, which is indeed 𝑔𝑓 (0) , will fix polynomial 𝑓 since

the degree of 𝑓 is 𝑡 − 1. Next, 𝐵 interpolates 𝑌 i.e., (𝑔𝑓 (0)) and {(𝑖, 𝛾𝑖)}𝑖∈𝐼𝑐 , and computes

the commitments 𝐹1, · · · , 𝐹𝑡−1 (where 𝐹1 = 𝑔𝑎1 , · · · , 𝐹𝑡−1 = 𝑔𝑎𝑡−1) over the coefficients of

polynomial 𝑓 [60] (where 𝑓 = 𝑆 + 𝑎1 · 𝑥 + ... + 𝑎𝑡−1 · 𝑥𝑡−1). Note that 𝐵 does not obtain the

exact coefficients of the polynomial 𝑓 (i.e., 𝑎𝑖 values) but only computes the commitments

𝐹𝑖 = 𝑔
𝑎𝑖
. This is sufficient for 𝐵 to simulate the role of the AN since it only needs to publish

the commitments of the polynomial and not the exact coefficients.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

28 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

𝐵 outputs 𝑝𝑎𝑟𝑎𝑚 = (𝐺,𝑞, 𝑔, 𝑒𝑘AN, 𝑣𝑘AN, (𝐹0, ..., 𝐹𝑡−1)), as well as the security parameter 1
_

to the adversary. Note that 𝐵 also records the master shares of corrupted members i.e.,

{(𝑖, 𝑓 (𝑖))}𝑖∈𝐼𝑐 to use in the registration phase.

(2)(a) 𝐴 registers a corrupted user to the authenticating system. 𝐵 selects an index 𝑖 from 𝐼𝑐
together with 𝑓 (𝑖) (which were both computed during the SetUp protocol) and sends them

to𝐴. As the selection of the index 𝑖 is random, it mimics the computation of a hash function

and, hence is distinguishable from the real protocol execution in the adversary’s view.

(b) 𝐴 instructs 𝐵 to register an honest user to the authenticating system. Note that 𝐵 cannot

generate the master shares of honest users since it does not know the coefficients of the

function 𝑓 . However, since it is a local calculation for 𝐵, this shortage remains unnoticed

to 𝐴. 𝐵 records the index of the honest user inside 𝐼ℎ .

(3) 𝐴 has oracle access to token generation i.e., AN.𝑇𝑔𝑒𝑛 and RN𝑗 .𝑇𝑔𝑒𝑛 ∈ 𝐻 . 𝐵 keeps the set

of tokens queried by 𝐴 for each server inside 𝑄𝑇𝑜𝑘𝑒𝑛
AN or 𝑄𝑇𝑜𝑘𝑒𝑛

RN𝑗
. Initially, 𝐵 draws random

values 𝑗∗ ∈ [1, 𝑁] (to be the guess over the index of the honest registration server for which

the adversary comes up with the invitation letter forgery) and 𝑞∗ ∈ [1, 𝑃 (_)] where 𝑃 (_) is
the upper-bound on the number of adversary’s queries to𝑇𝑔𝑒𝑛 for each of the servers. 𝐵 also

picks a random index 𝑙∗ where 𝑙∗ is not in any prior queries to any of the registration servers

RN𝑗∈[1,𝑁] .𝑇𝑔𝑒𝑛.
• If 𝑗 is equal to 𝑗∗, and if this is the 𝑞∗ query to RN𝑗∗ .𝑇𝑔𝑒𝑛 then 𝐵 returns

𝑇𝑜𝑘𝑒𝑛∗ = (𝑆𝑖𝑔𝑛𝑠𝑘RN𝑗∗
(𝑙∗ | |𝑋), 𝑙∗, 𝑋)

𝑋 was given to 𝐵 from the CDH game. 𝐵 plays the role of 𝐹𝑅
𝑃𝑂𝐷𝐿

, receives the verification

request of (𝐺,𝑞, 𝑔, 𝑋) from the adversary and outputs 𝑎𝑐𝑐𝑒𝑝𝑡 to the adversary. 𝐵 inserts

(𝑋,⊥) into 𝑄𝑇𝑜𝑘𝑒𝑛
𝑗∗ .

• If 𝑗 ≠ 𝑗∗ or this is not the 𝑞∗ query to RN𝑗∗ .𝑇𝑔𝑒𝑛 , and assuming this is the 𝑞𝑡ℎ query of

adversary to RN𝑗 .𝑇𝑔𝑒𝑛, 𝐵 selects a random index 𝑙 and a random 𝑟 ∈𝑅 𝑍𝑞 , sets 𝜔 = 𝑔𝑟 and

outputs 𝑇𝑜𝑘𝑒𝑛 = (𝑆𝑖𝑔𝑛𝑠𝑘𝑆𝑗 (𝑙 | |𝜔), 𝑙, 𝜔). 𝐵 plays the role of 𝐹𝑅
𝑃𝑂𝐷𝐿

, receives the verification

request of (𝐺,𝑞, 𝑔, 𝜔) from the adversary and outputs 𝑎𝑐𝑐𝑒𝑝𝑡 to the adversary. 𝐵 inserts

(𝜔, 𝑟) to 𝑄𝑇𝑜𝑘𝑒𝑛
RN𝑗

.

The adversary may generate a token 𝑇𝑜𝑘𝑒𝑛 = ([, 𝑙, 𝜔) for a user 𝑙 ∈ 𝐼ℎ from RN𝑗 ∈ 𝐶 and

hand it over to the challenger. The adversary contacts 𝐹𝑅
𝑃𝑂𝐷𝐿

i.e., the challenger 𝐵 and hands

over ((𝐺,𝑞, 𝑔, 𝜔), 𝑟). 𝐵 checks whether 𝑔𝑟 = 𝜔 and accepts or rejects the token accordingly.

Also, 𝐵 verifies the signature [against the verification key of RN𝑗 and accepts or rejects the

token accordingly. If the verification passed successfully, 𝐵 stores (𝜔, 𝑟) in 𝑄𝑇𝑜𝑘𝑒𝑛
RN𝑗

. If 𝜔 == 𝑋

(the CDH challenge), and the token is accepted, then 𝐵 outputs 𝑌 𝑟
to the CDH challenger.

(4) The adversary queries RN𝑗 .𝑋 𝐼𝑣𝑟 𝑓 𝑦 (𝐼𝑛𝑣𝐿𝑒𝑡,𝑇𝑜𝑘𝑒𝑛, 𝑃𝑎𝑟𝑎𝑚AN, 𝑑𝑘RN𝑗
) for RN𝑗 ∈ 𝐻 on the

invitation letters and tokens of his own choice i.e., 𝐼𝑛𝑣𝐿𝑒𝑡 = (𝑇, 𝑒Δ) and 𝑇𝑜𝑘𝑒𝑛 = ([, 𝑙, 𝜔). 𝐵
runs the 𝑋𝐼𝑣𝑟 𝑓 𝑦 algorithm and responds accordingly. If the output of 𝑋𝐼𝑣𝑟 𝑓 𝑦 is not reject

and if 𝑗 = 𝑗∗ and𝑇𝑜𝑘𝑒𝑛 = 𝑇𝑜𝑘𝑒𝑛∗ (i.e., 𝜔 = 𝑋), then 𝐵 outputs𝑇 ·𝐷𝑒𝑐𝑑𝑘𝑆𝑗∗ (𝑒Δ)
−1

to the CDH

game.

𝑇 · 𝐷𝑒𝑐𝑑𝑘𝑆𝑗∗ (𝑒Δ)
−1 = 𝑋𝑆+Δ · 𝑋 −Δ = 𝑋𝑆 = 𝑔𝑥𝑆 = 𝑔𝑥𝑦 (30)

(5) 𝐴 has oracle access to 𝐼𝑔𝑒𝑛 algorithm. 𝐴 asks the challenger to generate an invitation from

the honest member 𝑖 for the registration server RN𝑗 ∈ 𝐻 ∪𝐶 using a𝑇𝑜𝑘𝑒𝑛 = ([, 𝑙, 𝜔). 𝐵 first

authenticates the token against the signature verification key of RN𝑗 . If not verified, 𝐵 outputs

𝑟𝑒 𝑗𝑒𝑐𝑡 to𝐴. Also, if 𝜔 = 𝑋 , then 𝐵 aborts. Otherwise, 𝐵 attempts to issue an invitation. Notice

that 𝐵 cannot generate the invitation by following 𝐼𝑔𝑒𝑛 since it does not have the master

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 29

share of honest users i.e., 𝑠𝑖 for 𝑖 ∈ 𝐼ℎ . 𝐵 performs differently to compute a valid invitation as

explained next. 𝐵 computes 𝛾𝑖 =
∏𝑡

𝑣=0 𝐹
𝑖𝑣

𝑣 = 𝑔𝑠𝑖 (the second equality holds due to Equation

20) as well as selects a random value 𝛿𝑖 ∈𝑅 𝑍𝑞 . Then, 𝐵 constructs 𝜏𝑖 = 𝛾
𝑟
𝑖 · 𝑔𝛿𝑖 ·𝑟 where 𝑟 is

the discrete logarithm of 𝜔 in base 𝑔. It is immediate that 𝜏𝑖 (to be the first component of the

invitation letter) is well-structured since

𝜏𝑖 = 𝛾
𝑟
𝑖 · 𝑔𝛿𝑖 ·𝑟 = (𝑔𝑠𝑖)𝑟 · (𝑔𝛿𝑖) ·𝑟 = (𝑔𝑟)𝑠𝑖 · (𝑔𝑟)𝛿𝑖 = 𝜔𝑠𝑖 · 𝜔𝛿𝑖 = 𝜔𝑠𝑖+𝛿𝑖

(31)

𝐵 constructs 𝑒𝛿𝑖 as 𝐸𝑛𝑐𝑒𝑘RN𝑗
(𝜔𝛿𝑖) and outputs 𝐼𝑛𝑣𝑖 = (𝜏𝑖 , 𝑒𝛿𝑖) to 𝐴.

Finally, 𝐵 acts as 𝐹𝑅
𝑃𝑂𝐼𝐶

and waits for 𝐴’s message asking verification of (𝜏𝑖 , 𝑒𝛿𝑖 , 𝛾𝑖 , 𝜔) for
which 𝐵 responds 𝑎𝑐𝑐𝑒𝑝𝑡 to 𝐴. 𝐵 keeps the set of individual invitations and their tokens

queried by 𝐴 for each server RN𝑗 in 𝑄
𝐼𝑛𝑣
RN𝑗

= {(𝐼𝑛𝑣𝑖 ,𝑇𝑜𝑘𝑒𝑛)}.
(6) The adversary outputs an invitation letter 𝐼𝑛𝑣𝐿𝑒𝑡 = (𝑇, 𝑒Δ) for a valid token 𝑇𝑜𝑘𝑒𝑛

′
issued

by RN𝑗 ′ ∈ 𝐻 i.e., 𝑇𝑜𝑘𝑒𝑛
′ ∈ 𝑄𝑇𝑜𝑘𝑒𝑛

RN𝑗
′ for which no query has been made from RN𝑗

′ .𝐼𝑔𝑒𝑛 i.e.,

𝑇𝑜𝑘𝑒𝑛
′
∉ 𝑄 𝐼𝑛𝑣

RN
𝑗
′ .

(7) 𝐵 verifies whether the𝑇𝑜𝑘𝑒𝑛
′
is correctly signed under 𝑠𝑘RN′𝑗

. If not, 𝐵 outputs ⊥ to the CDH

challenger. Otherwise:

• If 𝑗 ′ ≠ 𝑗∗ or 𝑇𝑜𝑘𝑒𝑛
′
≠ 𝑇𝑜𝑘𝑒𝑛∗ 𝐵 outputs ⊥ to the CDH game.

• If 𝑗 ′ = 𝑗∗ and 𝑇𝑜𝑘𝑒𝑛
′
= 𝑇𝑜𝑘𝑒𝑛∗, 𝐵 outputs 𝑇 · 𝐷𝑒𝑐𝑑𝑘RN𝑗∗

(𝑒Δ)−1 to the CDH challenger. In

fact, if 𝐴 constructs 𝐼𝑛𝑣𝐿𝑒𝑡 correctly, we expect that 𝑇 = 𝑋𝑆+Δ
and 𝑒Δ = 𝐸𝑛𝑐𝑒𝑘RN𝑗∗

(𝑋Δ).
Given that 𝑋 = 𝑔𝑥 and 𝑌 = 𝑔𝑦 = 𝑔𝑆 , we have

𝑇 · 𝐷𝑒𝑐𝑑𝑘RN𝑗∗
(𝑒Δ)−1 = (𝑋)𝑆+Δ · (𝑋)Δ−1 = (𝑋)𝑆 = (𝑔𝑥)𝑦 = 𝑔𝑥𝑦 (32)

𝑔𝑥.𝑦 is the solution to the given CDH problem.

This is immediate that 𝐵 runs in polynomial time. In step 3, 𝐵 predicts the token for which the

adversary, 𝐴, will create a forged invitation letter to win the game. This prediction consists of a

server index 𝑗∗ and a query index 𝑞∗, representing the server RN𝑗∗ and the corresponding query

index for RN𝑗∗ .𝑇𝑔𝑒𝑛. If 𝐵’s guess is accurate, then the view of 𝐴 during their interaction with 𝐵

will be indistinguishable from the 𝑋𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) game.

When 𝐵 guesses correctly and 𝐴 outputs a forgery, then 𝐵 can solve the given instance of CDH.

Assume that 𝐴’s advantage in 𝑋𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) game is 𝜖 . The probability that 𝐵 wins is

𝑃𝑟 [B wins] = 𝑃𝑟 [𝐵(𝐺,𝑞, 𝑔, 𝑋 = 𝑔𝑥 , 𝑌 = 𝑔𝑦) = 𝑔𝑥 ·𝑦] (33)

= 𝑃𝑟 [A wins ∧ (𝑇𝑜𝑘𝑒𝑛′ = 𝑇𝑜𝑘𝑒𝑛∗ AND 𝑗 ′ = 𝑗∗)]
= 𝑃𝑟 [A wins |𝑇𝑜𝑘𝑒𝑛′ = 𝑇𝑜𝑘𝑒𝑛∗ AND 𝑗 ′ = 𝑗∗] · 𝑃𝑟 [𝑇𝑜𝑘𝑒𝑛′ = 𝑇𝑜𝑘𝑒𝑛∗ AND 𝑗 ′ = 𝑗∗]

≥ 𝜖 · 1

𝑃𝑜𝑙𝑦 (_) ·
1

𝑁

The last equality holds since the number of queries made by 𝐴 is at most 𝑃𝑜𝑙𝑦 (_) (i.e., polynomial

in _), and there are 𝑁 registration servers (honest and corrupted), hence, the probability 𝑇𝑜𝑘𝑒𝑛∗ =
𝑇𝑜𝑘𝑒𝑛

′
and 𝑗 ′ = 𝑗∗ is at least 1

𝑃𝑜𝑙𝑦 (_) ·
1

𝑁
.

𝐴may attempt to forge a token on behalf ofRN𝑗
′ for which it has obtained an individual invitation

from an honest user for the registration in one of the corrupted registration servers. However, due

to the signature unforgeability,𝐴 cannot create a valid token outside of the set of queried tokens i.e.,

∉ 𝑄𝑇𝑜𝑘𝑒𝑛
RN𝑗

for all RN𝑗 ∈ 𝐻 . Also, all the queries to 𝐼𝑔𝑒𝑛(𝑇𝑜𝑘𝑒𝑛 = ([, 𝑖, 𝜔), 𝑠𝑙 , 𝑃𝑎𝑟𝑎𝑚RN𝑗
) where 𝑙 ∈ 𝐼ℎ

and RN𝑗 ∈ 𝐶 are answered if the given 𝑇𝑜𝑘𝑒𝑛 is generated by the corrupted server RN𝑗 correctly

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

30 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

i.e., 𝑇𝑜𝑘𝑒𝑛 ∈ 𝑄𝑇𝑔𝑒𝑛

RN𝑗
which means that the adversary has passed ZKPODL successfully (knows the

DL of the 𝜔). The presence of zero-knowledge proof will prevent the adversary from using a token

of an honest server since the adversary does not know the DL of 𝜔 due to the hardness of the

discrete logarithm assumption. Without ZKPODL, the adversary can win the 𝑋𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) 9
.

Assuming that 𝜖 is non-negligible, 𝐵 also wins with non-negligible probability. This contradicts

the hardness of the CDH problem. Hence 𝐴’s success probability in 𝐼𝑛𝑣𝑈𝑛𝑓 𝑜𝑟𝑔𝑒𝐴 (_) must be

negligible. This concludes the proof. ■

7 RELATEDWORK
In this section, we explore relevant studies that closely resemble invitation-only registration systems

and specifically address the confidentiality of the relationship between the inviter and the invitee,

as well as invitation unforgeability. We also highlight their limitations when applied to anonymous

invitation-based systems.

7.1 Group Signatures and Linkable Group Signatures
In group signature schemes [3, 7, 8, 15–17, 25, 27, 33, 45, 64], a group of users is granted signature

power by a group authority in such a way that any member of the group can anonymously sign on

behalf of the group. The group authority also holds enough authority to revoke user anonymity

[3, 53]. One can consider the adoption of group signatures for the invitation-based system in

which the signers are the inviters and the signature corresponds to an invitation. However, such

adoption does not preserve invitation unforgeability [25]. In specific, there is no limit on the

number of signatures (invitations) that one (inviter) can generate for an invitee hence no invitation

unforgeability is guaranteed. Furthermore, the traceability of signatures by the group authority

[8, 16, 33, 64] is against the anonymity requirement of invitation-based systems. In the dynamic

variant of group signatures, the authority’s power in anonymity revocation is delegated to a separate

entity called tracer [4]. However, this setting still demands trust assumption on the tracer which is

not desirable for the signer/inviter anonymity.

7.2 Selective-Disclosure Credentials with Threshold Issuance
Selective-disclosure credentials with threshold issuance [62] consist of a set of distributed and

mutually un-trusted authorities who can jointly issue credentials on users’ private/public attributes.

Users later can use their credentials to anonymously reveal the possession of certain attributes

to verifiers. Credentials enjoy unforgeability in the face of a small subset of corrupted issuing

authorities. Moreover, users can randomize their credentials and protect their attributes against

the conspiracy of the verifier and all the authorities. One can adopt such a scheme to enable an

invitation-based system where the issuing authorities correspond to the inviters, the user is the

invitee, the issued credentials constitute invitations, and the verifier has the role of the group

administrator. While such integration achieves invitation-unforgeability, it falls short in preserving

the anonymity of the inviter-invitee relationship. Notice that the notion of anonymity in selective-

disclosure credential [62] concerns the attribute anonymity (i.e., being able to anonymously prove

the possession of an attribute without explicitly revealing the credentials) whereas the concept of

9𝐴 takes 𝜔 from one of the tokens 𝑇𝑜𝑘𝑒𝑛 = ([, 𝑙,𝜔) in 𝑄
𝑇𝑔𝑒𝑛

RN𝑗∗
and then generates a valid token 𝑇𝑜𝑘𝑒𝑛′′ =

(𝑆𝑖𝑔𝑛𝑠𝑘RN𝑗
(𝜔), 𝑖, 𝜔) at step 4 from a corrupted server RN𝑗 ∈ 𝐶 . Next, 𝐴 queries 𝐼𝑔𝑒𝑛 (𝑇𝑜𝑘𝑒𝑛′′, 𝑠𝑙 , 𝑃𝑎𝑟𝑎𝑚RN𝑗

) for 𝑙 ∈ 𝐼ℎ
and obtains a valid invitation 𝐼𝑛𝑣𝑙 = (𝜏𝑙 , 𝑒𝛿𝑙) . Given 𝐼𝑛𝑣𝑙 and 𝑑𝑘𝑠𝑘RN𝑗

, the adversary would be able to open 𝑒𝛿𝑙 to 𝜔
𝛿𝑙

hence can construct its 𝑡𝑡ℎ valid individual invitation as 𝐼𝑛𝑣𝑡 = (𝜏𝑙 , 𝐸𝑛𝑐𝑒𝑘RN𝑗∗
(𝜔𝛿𝑙)) for a 𝑇𝑜𝑘𝑒𝑛 = ([, 𝑙,𝜔) ∈ 𝑄𝑇𝑔𝑒𝑛

RN𝑗∗
.

The adversary combines 𝐼𝑛𝑣𝑡 with 𝑡 − 1 invitations issued by the 𝑡 − 1 corrupted inviters under its control and hands over

an intact 𝐼𝑛𝑣𝐿𝑒𝑡 to 𝐵.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 31

anonymity in an invitation-based system regards inviter-invitee relationship, i.e., to provably ensure

that no verifier (i.e., the group administrator in the invitation-based scenario) can collude with a

subset of issuing authorities (i.e., colluding inviters) and identify other non-colluding authorities

(i.e., verifiers) involved in the credential issuance. The latter definition has no clear and provable

measurement in the selective-disclosure credential schemes as it is an orthogonal and irrelevant

concern in this context. This concern is relevant to all selective disclosure credential schemes like

[15, 22] and [62] regardless of their issuance type, whether they are centralized or decentralized.

7.3 Electronic Voting (e-voting)
Electronic voting systems consist of a set of voters, some candidates to be voted, and one/multiple

authorities that handle tallying. An e-voting system must ensure that only authorized users partici-

pate in the voting and that each voter casts only one vote. More importantly, the content of the

individual votes must be kept private, i.e., no vote can be traced back to its voter. In the literature,

this property is known as vote privacy, anonymity, and untraceability. E-voting techniques are

similar to anonymous invitation-only systems in many aspects. The role of voters is analogous

to the inviters. Each round of the election with the Yes/No votes for a candidate can be treated as

inviters casting their invitations for the registration of a newcomer. A Yes vote indicates inviting

the candidate/newcomer and a No vote implies not inviting. Preserving the privacy of the vote is

equivalent to inviter anonymity. Likewise, the prevention of double voting resembles invitation

unforgeability.

Despite the aforementioned similarities, e-voting proposals fall short in satisfying inviter

anonymity, invitation unforgeability, and scalability simultaneously. To illustrate this incompati-

bility, we first classify the e-voting techniques into two main categories: 1- explicit vote casting,

2-anonymous vote casting. Under each category, we identify the subtleties of transplanting the

e-voting solution into invitation-only systems.

(1) Explicit vote casting: The voter authenticates himself to the authorities explicitly and im-

mediately casts his private ballot. The ballot is shielded using either a threshold encryption

scheme whose decryption key is divided between multiple authorities [43, 58], or secret

sharing schemes where multiple authorities obtain one share of the ballot [51]. Before tallying

the votes, the identifiable information shall be removed from the individual votes either by

shuffling them through mix-net [26] or by homomorphically aggregating them [51]. In the

context of the invitation-only system, this type of proposal has performance problems. That

is, to preserve the inviter’s anonymity (namely, hiding the identity of voters with the Yes

vote), all the members should participate in the voting (including those who will cast a No

vote). Otherwise, the real inviters will be revealed to the voting authorities. This imposes an

unnecessary load on the non-inviters (voters with No votes). In contrast, in Anonyma, the
entire invitation procedure is carried out only by the invitee and his inviters.

(2) Anonymous vote casting: This technique relies on one-time pseudonyms together with an

anonymous communication channel. A voter hands over their credential (e.g., social security

number – SSN) to the voting authority. Then, through a blind signature scheme, the voting

authority issues a signature on the voter’s pseudonym (that is also bonded to the voter’s

SSN). The pseudonym is a one-time value and untraceable to the real identity, i.e., SSN. Later

on, a voter casts a vote under his pseudonym and via an anonymous communication channel

to the voting authority. Voters attempting to vote twice will have to risk the disclosure of

their real identities (i.e., SSN) [5, 54]. When we integrate this solution to the invitation-only

system, the main problem is that the pseudonyms are one-time hence a user cannot use

the same pseudonym for multiple elections (i.e., to invite different users). Otherwise, his

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

32 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

identity will be disclosed. To cope with this issue, upon the arrival of each newcomer, the

authority has to issue new pseudonyms for all the existing members to enable them to act as

the inviter for the newcomer (regardless of whether they are the inviters of the newcomer

or not). This is certainly not an efficient solution as the load of the authority scales linearly

with the number of joining members. Moreover, all the existing members also have to work

linearly in the number of joining users. Alternatively, the authority should issue multiple

pseudonyms (instead of one) for each member. However, this is not clear how to ensure that

an inviter will only be able to use one pseudonym for each newcomer. In other words, the

inviter should not be able to use all of his pseudonyms to make 𝑡 valid invitations for just a

single invitee since otherwise it would violate the invitation unforgeability (in which the

invitations must be issued by 𝑡 distinct inviters).

7.4 (t,N) Threshold Ring Signature
Ring signature schemes, first introduced by [55], are variants of group signature schemes without

any group manager and with unconditional user anonymity. Users are not fixed to a specific group

rather a signer can blend with an ad-hoc group of users to hide its identity when signing a message.

To do so, the signer utilizes a set of users’ public keys, without their knowledge, and creates a ring

from those keys during the signing procedure. The user then sends the message along with the

ring, to the verifier who can verify that one of the ring members generated it [1].

In a (t, N) threshold ring signature scheme [10, 12, 41, 46, 49, 52], the signature of 𝑡 members

of the group are needed to create a valid signature on a message. This fact can be verified by the

signature verifier as well.

An invitation-based system can be instantiated from a threshold ring signature, assuming that the

signers are the inviters and that a valid signature constitutes a valid invitation for a newcomer. The

important shortcoming of such schemes is that their running time complexity for the generation

of an invitation is at least linearly dependent on the size of the system, i.e., the total number of

existing members [10, 12, 46, 49]. In some other cases, the dependency is exponential [41]. The

same issue applies to the length of the signature (invitation letter) as it is comprised of𝑂 (𝑁) group
elements where 𝑁 is the total number of existing members. This considerably degrades the system’s

performance. In contrast, the performance of Anonyma is only influenced by the threshold of 𝑡 and

is independent of the size of the system. That is, the invitation generation complexity is 𝑂 (𝑡), and
the invitation verification is done in 𝑂 (1). Also, the invitation length is 𝑂 (1).

7.5 Direct Anonymous Attestation
The Direct Anonymous Attestation (DAA) scheme [13] can be seen as a group signature scheme

without the revocable anonymity feature that allows users to decide whether a signature should be

linkable to another signature. DAA can detect if a signature was produced using a known key, and it

is used as a method for remote authentication of a hardware module called Trusted PlatformModule

(TPM) to a remote third-party verifier. At a high level, the hardware module obtains the issuer’s

signature on a secret message using a two-party protocol, and the signature is called attestation.

Later, the module utilizes zero-knowledge proof to prove possession of a valid signature from the

issuer to a verifier, where the proof may rely on randomness provided by the verifier.

The DAA scheme shares similarities with an invitation-based system, where the issuer acts as

the group admin, the TPM constitutes an inviter, and an invitee acts as an intermediary to collect

proof of possession of attestation from inviters and hands them to the group admin. However, the

DAA scheme [13] does not fully align with Anonyma’s system model where a DAA scheme requires

that the issuer and verifier be separate entities to maintain TPM/invitee anonymity i.e., to ensure

that no single entity has access to both the identifying and verifying information, making it more

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 33

difficult to de-anonymize the TPM. This makes DAA not applicable to anonymous invitation-based

scenarios where the issuer and verifier are controlled by the same entity i.e. the group administrator.

Additionally, the size of the invitation letter when using DAA is linear in the invitation threshold,

whereas in Anonyma, the invitation letter is a constant size.

7.6 Delegatable Anonymous Credentials
Anonymous Credentials (AC) systems [14, 15, 28, 39] enable users to demonstrate ownership of

attributes stored in a credential without disclosing additional information. Delegatable Anonymous

Credentials (DAS) systems [2, 19–21, 29, 34, 50], a more advanced form of AC, allow credential

holders to delegate their credentials to other users, mimicking the hierarchies frequently seen in

public-key infrastructures (PKI). DACs offer greater privacy protection than standard AC systems

because they conceal the identities of issuers and delegators. Even when all other user information is

protected, an issuer’s identity can potentially reveal information about the user’s identity. In a DAC

system, a root credential issuer generates credentials for requesting users based on various attributes.

These credentials are linked to the receiver’s public key, and the knowledge of the corresponding

secret key is crucial for the zero-knowledge proof of ownership. However, the system permits

users to substitute their embedded public keys in the credentials with the delegatee’s public key,

enabling another user to acquire possession of the credential. Credential verifiers need the root

issuer’s public key and the credential owner’s public key (not the delegator’s public key) to verify

the ownership of the credentials claimed by a user.

When creating an anonymous invitation-based system with a DAC, the group administrator

assumes the roles of the root issuer and the credential verifier. Inviters or existing users receive

credentials from the group administrator, which they can delegate to invite other users. However, a

drawback of this design is that invitees with insufficient invitations may exchange their credentials

to meet the required invitation threshold, thereby compromising the invitation-based system’s

invitation unforgeability (which differs from the unforgeability property of DACs, which ensures

users cannot generate credentials not originally issued by the root issuer). This can be achieved

using the delegation property of credentials in DACs. For example, a user with only one invitation

could collude with another invitee who possesses 𝑡 − 1 credentials, and both parties could delegate

their credentials to each other to achieve 𝑡 valid invitations for each of them individually. It’s

important to note that delegation doesn’t void the possession of the previous owner but instead

extends it to the new user.

8 CONCLUSION
Anonyma is a secure and anonymous invitation-based system that provides inviter anonymity and

invitation unforgeability. These properties are rigorously defined and proven in the context of a

malicious and adaptive adversarial model. Inviter anonymity in Anonyma relies on the security

of the underlying pseudo-random number generator, while invitation unforgeability relies on the

computational Diffie-Hellman assumption.

Anonyma is designed for efficiency, with constant computational overhead for inviters and the

system administrator, and an overhead of𝑂 (𝑡) for the invitee. Invitations in Anonyma are short and
of constant size, containing only two group elements. The design also features standalone protocols

for invitation generation, aggregation, and verification. These protocols are non-interactive and

executed locally by each entity (i.e., inviter, invitee, and group administrator) without the need for

interaction with the other party. This asynchronous design is a vital feature for the feasibility of

the design in practical deployment.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

34 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

Anonyma also merits scalability, allowing the dynamic addition of new members without re-

keying existing ones. Our asymptotic and numerical analysis proved that authorizing a new user

incurs constant computation and communication complexity.

Additionally, a cross-network version of Anonyma, called AnonymaX , is proposed, enabling third-
party authentication. AnonymaX mirrors the scalability and efficiency of Anonyma. Separate proofs
are provided for invitation unforgeability and inviter anonymity in the cross-network version.

ACKNOWLEDGEMENTS
We acknowledge the support of the Turkish Academy of Sciences, the Royal Society of UK Newton

Advanced Fellowship NA140464, and European Union COST Action IC1306.

REFERENCES
[1] Amit K Awasthi and Sunder Lal. 2005. ID-based ring signature and proxy ring signature schemes from bilinear pairings.

arXiv preprint cs/0504097 (2005).

[2] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Hovav Shacham. 2009.

Randomizable proofs and delegatable anonymous credentials. In Advances in Cryptology-CRYPTO 2009: 29th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings. Springer, 108–125.

[3] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. 2003. Foundations of group signatures: Formal definitions,

simplified requirements, and a construction based on general assumptions. In Advances in Cryptology—EUROCRYPT
2003: International Conference on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May 4–8,
2003 Proceedings 22. Springer, 614–629.

[4] Mihir Bellare, Haixia Shi, and Chong Zhang. 2005. Foundations of group signatures: The case of dynamic groups.

In Topics in Cryptology–CT-RSA 2005: The Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA,
February 14-18, 2005. Proceedings. Springer, 136–153.

[5] Josh Benaloh and Dwight Tuinstra. 1994. Receipt-free secret-ballot elections. In Proceedings of the twenty-sixth annual
ACM symposium on Theory of computing. ACM, 544–553.

[6] Manuel Blum and Silvio Micali. 1984. How to generate cryptographically strong sequences of pseudorandom bits.

SIAM journal on Computing 13, 4 (1984), 850–864.

[7] Dan Boneh, Xavier Boyen, and Hovav Shacham. 2004. Short group signatures. In Crypto, Vol. 3152. Springer, 41–55.
[8] Dan Boneh and Hovav Shacham. 2004. Group signatures with verifier-local revocation. In Proceedings of the 11th ACM

conference on Computer and communications security. 168–177.
[9] Sanaz Taheri Boshrooyeh and Alptekin Küpçü. 2017. Inonymous: anonymous invitation-based system. In Data Privacy

Management, Cryptocurrencies and Blockchain Technology. Springer, 219–235.
[10] Xavier Boyen. 2007. Mesh signatures. InAnnual International Conference on the Theory and Applications of Cryptographic

Techniques. Springer, 210–227.
[11] John Brainard, Ari Juels, Ronald L Rivest, Michael Szydlo, and Moti Yung. 2006. Fourth-factor authentication: somebody

you know. In Proceedings of the 13th ACM conference on Computer and communications security. ACM, 168–178.

[12] Emmanuel Bresson, Jacques Stern, and Michael Szydlo. 2002. Threshold ring signatures and applications to ad-hoc

groups. In Advances in Cryptology—CRYPTO 2002: 22nd Annual International Cryptology Conference Santa Barbara,
California, USA, August 18–22, 2002 Proceedings. Springer, 465–480.

[13] Ernie Brickell, Jan Camenisch, and Liqun Chen. 2004. Direct anonymous attestation. In Proceedings of the 11th ACM
conference on Computer and communications security. 132–145.

[14] Jan Camenisch and Anna Lysyanskaya. 2003. A signature scheme with efficient protocols. In Security in Communication
Networks: Third International Conference, SCN 2002 Amalfi, Italy, September 11–13, 2002 Revised Papers 3. Springer,
268–289.

[15] Jan Camenisch and Anna Lysyanskaya. 2004. Signature schemes and anonymous credentials from bilinear maps. In

Advances in Cryptology–CRYPTO 2004: 24th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 15-19, 2004. Proceedings 24. Springer, 56–72.

[16] Jan Camenisch and Markus Michels. 1998. A group signature scheme with improved efficiency. In International
Conference on the Theory and Application of Cryptology and Information Security. Springer, 160–174.

[17] Jan Camenisch and Markus Stadler. 1997. Efficient group signature schemes for large groups. In Advances in Cryptol-
ogy—CRYPTO’97: 17th Annual International Cryptology Conference Santa Barbara, California, USA August 17–21, 1997
Proceedings 17. Springer, 410–424.

[18] Abdelberi Chaabane, Gergely Acs, Mohamed Ali Kaafar, et al. 2012. You are what you like! information leakage through

users’ interests. In Proceedings of the 19th Annual Network & Distributed System Security Symposium (NDSS).

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 35

[19] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. 2013. Succinct Malleable NIZKs and an

Application to Compact Shuffles.. In TCC, Vol. 7785. Springer, 100–119.
[20] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. 2014. Malleable signatures: New

definitions and delegatable anonymous credentials. In 2014 IEEE 27th Computer Security Foundations Symposium. IEEE,

199–213.

[21] Melissa Chase and Anna Lysyanskaya. 2006. On signatures of knowledge. In Advances in Cryptology-CRYPTO 2006:
26th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2006. Proceedings 26.
Springer, 78–96.

[22] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. 2014. Algebraic MACs and keyed-verification anonymous

credentials. In Proceedings of the 2014 acm sigsac conference on computer and communications security. 1205–1216.
[23] Sanjit Chatterjee, Darrel Hankerson, and Alfred Menezes. 2010. On the efficiency and security of pairing-based

protocols in the type 1 and type 4 settings. In International Workshop on the Arithmetic of Finite Fields. Springer,
114–134.

[24] David Chaum and Torben Pryds Pedersen. 1992. Wallet databases with observers. In Annual International Cryptology
Conference. Springer, 89–105.

[25] David Chaum and Eugène Van Heyst. 1991. Group signatures. In Workshop on the Theory and Application of of
Cryptographic Techniques. Springer, 257–265.

[26] David L Chaum. 1981. Untraceable electronic mail, return addresses, and digital pseudonyms. In Communications of
the ACM, Vol. 24. ACM, 84–90.

[27] Lidong Chen and Torben Pryds Pedersen. 1995. New group signature schemes. Lecture Notes in Computer Science 950
(1995), 171–181.

[28] Aisling Connolly, Pascal Lafourcade, and Octavio Perez Kempner. 2022. Improved constructions of anonymous

credentials from structure-preserving signatures on equivalence classes. In Public-Key Cryptography–PKC 2022: 25th
IACR International Conference on Practice and Theory of Public-Key Cryptography, Virtual Event, March 8–11, 2022,
Proceedings, Part I. Springer, 409–438.

[29] Elizabeth C Crites and Anna Lysyanskaya. 2019. Delegatable anonymous credentials from mercurial signatures. In

Topics in Cryptology–CT-RSA 2019: The Cryptographers’ Track at the RSA Conference 2019, San Francisco, CA, USA,
March 4–8, 2019, Proceedings. Springer, 535–555.

[30] Whitfield Diffie and Martin Hellman. 1976. New directions in cryptography. IEEE transactions on Information Theory
22, 6 (1976), 644–654.

[31] Taher ElGamal. 1985. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE transactions
on information theory 31, 4 (1985), 469–472.

[32] Paul Feldman. 1987. A practical scheme for non-interactive verifiable secret sharing. In 28th Annual Symposium on
Foundations of Computer Science (sfcs 1987). IEEE, 427–438.

[33] Matthew Franklin and Haibin Zhang. 2012. Unique group signatures. In European Symposium on Research in Computer
Security. Springer, 643–660.

[34] Georg Fuchsbauer. 2011. Commuting signatures and verifiable encryption. In Advances in Cryptology–EUROCRYPT
2011: 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia,
May 15-19, 2011. Proceedings 30. Springer, 224–245.

[35] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any mental game. In Proceedings of the nineteenth
annual ACM symposium on Theory of computing. ACM, 218–229.

[36] Neil Zhenqiang Gong and Bin Liu. 2018. Attribute inference attacks in online social networks. In ACM Transactions on
Privacy and Security (TOPS), Vol. 21. ACM, 3.

[37] Neil Zhenqiang Gong and Di Wang. 2014. On the security of trustee-based social authentications. In IEEE transactions
on information forensics and security, Vol. 9. IEEE, 1251–1263.

[38] Jens Groth. 2005. Non-interactive zero-knowledge arguments for voting. In International Conference on Applied
Cryptography and Network Security. Springer, 467–482.

[39] Lucjan Hanzlik and Daniel Slamanig. 2021. With a little help from my friends: Constructing practical anonymous

credentials. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. 2004–2023.
[40] Carmit Hazay and Yehuda Lindell. 2010. Efficient secure two-party protocols: Techniques and constructions. Springer

Science & Business Media.

[41] Toshiyuki Isshiki and Keisuke Tanaka. 2005. An (n–t)-out-of-n threshold ring signature scheme. In Australasian
Conference on Information Security and Privacy. Springer, 406–416.

[42] Jonathan Katz and Yehuda Lindell. 2014. Introduction to modern cryptography. CRC press.

[43] Aggelos Kiayias and Moti Yung. 2004. The vector-ballot e-voting approach. In International Conference on Financial
Cryptography. Springer, 72–89.

[44] David W Kravitz. 1993. Digital signature algorithm. US Patent 5,231,668.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

36 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

[45] Benoît Libert, Thomas Peters, and Moti Yung. 2012. Group signatures with almost-for-free revocation. In Annual
Cryptology Conference. Springer, 571–589.

[46] Joseph K Liu, Victor K Wei, and Duncan S Wong. 2003. A separable threshold ring signature scheme. In International
Conference on Information Security and Cryptology. Springer, 12–26.

[47] Shah Mahmood. 2013. Online social networks: Privacy threats and defenses. In Security and Privacy Preserving in
Social Networks. Springer, 47–71.

[48] G Pon Malar and C Emilin Shyni. 2015. Facebookfs trustee based social authentication. In Int. J. Emerg. Technol.
Comput. Sci. Electron, Vol. 12. 224–230.

[49] Carlos Aguilar Melchor, Pierre-Louis Cayrel, Philippe Gaborit, and Fabien Laguillaumie. 2011. A new efficient threshold

ring signature scheme based on coding theory. In IEEE Transactions on Information Theory, Vol. 57. IEEE, 4833–4842.
[50] Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer. 2022. Practical Delegatable Anonymous Credentials

From Equivalence Class Signatures. Cryptology ePrint Archive (2022).
[51] Divya G Nair, VP Binu, and G Santhosh Kumar. 2015. An improved e-voting scheme using secret sharing based secure

multi-party computation. In arXiv preprint arXiv:1502.07469.
[52] Takeshi Okamoto, Raylin Tso, Michitomo Yamaguchi, and Eiji Okamoto. 2018. A 𝑘-out-of-𝑛 Ring Signature with

Flexible Participation for Signers. Cryptology ePrint Archive (2018).
[53] Maharage Nisansala Sevwandi Perera, Toru Nakamura, Masayuki Hashimoto, Hiroyuki Yokoyama, Chen-Mou Cheng,

and Kouichi Sakurai. 2022. A survey on group signatures and ring signatures: traceability vs. anonymity. Cryptography
6, 1 (2022), 3.

[54] Michael J Radwin and Phil Klein. 1995. An untraceable, universally verifiable voting scheme. In Seminar in Cryptology.
829–834.

[55] Ronald L Rivest, Adi Shamir, and Yael Tauman. 2001. How to leak a secret. In Advances in Cryptology—ASIACRYPT
2001: 7th International Conference on the Theory and Application of Cryptology and Information Security Gold Coast,
Australia, December 9–13, 2001 Proceedings 7. Springer, 552–565.

[56] Alon Rosen. 2004. A note on constant-round zero-knowledge proofs for NP. In Theory of Cryptography Conference.
Springer, 191–202.

[57] Abhishek Roy and Sunil Karforma. 2012. A Survey on digital signatures and its applications. In Journal of Computer
and Information Technology, Vol. 3. 45–69.

[58] Alexander Schneider, Christian Meter, and Philipp Hagemeister. 2017. Survey on Remote Electronic Voting. In arXiv
preprint arXiv:1702.02798.

[59] Claus-Peter Schnorr. 1989. Efficient identification and signatures for smart cards. In Conference on the Theory and
Application of Cryptology. Springer, 239–252.

[60] Berry Schoenmakers. 1999. A simple publicly verifiable secret sharing scheme and its application to electronic voting.

In Advances in Cryptology—CRYPTO’99: 19th Annual International Cryptology Conference Santa Barbara, California,
USA, August 15–19, 1999 Proceedings. Springer, 148–164.

[61] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[62] Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and George Danezis. 2018. Coconut: Threshold

issuance selective disclosure credentials with applications to distributed ledgers. arXiv preprint arXiv:1802.07344 (2018).
[63] Jia Yu, Fanyu Kong, Xiangguo Cheng, Rong Hao, and Guowen Li. 2014. One forward-secure signature scheme using

bilinear maps and its applications. In Information Sciences, Vol. 279. Elsevier, 60–76.
[64] Lingyue Zhang, Huilin Li, Yannan Li, Yong Yu, Man Ho Au, and Baocang Wang. 2019. An efficient linkable group

signature for payer tracing in anonymous cryptocurrencies. Future Generation Computer Systems 101 (2019), 29–38.

A DEFINITIONS
Computational Indistinguishability: Let 𝑋 = {(𝑖𝑛, _)}𝑖𝑛∈{0,1}∗,_∈N and 𝑌 = {(𝑎, _)}𝑖𝑛∈{0,1}∗,_∈N
be two series of random variables which are indexed with 𝑖𝑛 and _ where 𝑖𝑛 is the input and _ is

the security parameter. The two distributions are computationally indistinguishable i.e., 𝑋 ≡𝑐 𝑌 if

the following holds: ∀ 𝐷 (a non-uniform polynomial-time distinguisher), ∃ a negligible function
𝑛𝑒𝑔𝑙 (.) s.t. ∀𝑖𝑛 ∈ {0, 1}∗ and ∀_ ∈ N [40]:

|𝑃𝑟 [𝐷 (𝑋 (𝑖𝑛, _)) = 1] − 𝑃𝑟 [𝐷 (𝑌 (𝑖𝑛, _)) = 1] | ≤ 𝑛𝑒𝑔𝑙 (_) (34)

Secure Multi-Party Computation [35]: Consider function 𝐹 (𝑖𝑛1, ..., 𝑖𝑛𝑁)
= (𝑓1 (𝑖𝑛1, ..., 𝑖𝑛𝑁),· · · ,𝑓𝑁 (𝑖𝑛1, ..., 𝑖𝑛𝑁)) that receives inputs 𝑖𝑛𝑖 from 𝑖𝑡ℎ party to whom delivers

𝑓𝑖 (𝑖𝑛1, ..., 𝑖𝑛𝑁). 𝐹 shall be run by a trusted third party. We refer to such execution as the IDEAL

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

Anonyma 37

world. Assume 𝛾𝐹 is a multi-party protocol that computes 𝐹 . The execution of 𝛾𝐹 by the interaction

of parties constitutes the REAL world. 𝛾𝐹 is said to securely realize 𝐹 if the following holds. That

is, for every PPT adversary 𝐴 in protocol 𝛾𝐹 with auxiliary input 𝑎𝑢𝑥 ∈ {0, 1}∗ and controlling

parties specified in 𝑃𝑐 , there exists a PPT simulator 𝑆𝑖𝑚 for the ideal functionality 𝐹 , that ∀ security
parameter _:

{𝐼𝐷𝐸𝐴𝐿𝐹,𝑆𝑖𝑚 (𝑎𝑢𝑥),𝑃𝑐 (𝑖𝑛1, ..., 𝑖𝑛𝑁 , _)}} ≡𝑐 {𝑅𝐸𝐴𝐿𝛾𝐹 ,𝐴(𝑎𝑢𝑥),𝑃𝑐 (𝑖𝑛1, ..., 𝑖𝑛𝑁 , _)} (35)

𝐼𝐷𝐸𝐴𝐿𝐹,𝑆𝑖𝑚 (𝑎𝑢𝑥),𝑃𝑐 (𝑖𝑛1, ..., 𝑖𝑛𝑁 , _) represents the output of parties in interaction with

ideal functionality 𝐹 while 𝑆𝑖𝑚 is controlling parties specified in set 𝑃𝑐 . Similarly,

𝑅𝐸𝐴𝐿𝛾𝐹 ,𝐴(𝑎𝑢𝑥),𝑃𝑐 (𝑖𝑛1, ..., 𝑖𝑛𝑁 , _) asserts the output of the parties interacting in protocol 𝛾𝐹 .

Hybrid Model: Assume \ is a multiparty protocol that makes use of a sub-protocol 𝛾𝐹 . 𝛾𝐹 in turn

securely realizes the ideal functionality 𝐹 . The hybrid model allows proving the security of \ by

replacing 𝛾𝐹 with 𝐹 . As such, for any execution of 𝛾𝐹 in the proof, parties contact a trusted third

party running the ideal functionality 𝐹 . This would be called 𝐹 -hybrid model [40].

Sigma protocol: A Σ protocol is a three rounds proof system (𝑃,𝑉) for a relation 𝑅 which satisfies

the following properties [40]:

• Completeness: An honest prover 𝑃 holding a private input𝑤 , where (𝑥,𝑤) ∈ 𝑅, can always

convince an honest verifier 𝑉 .

• Special soundness: There exists a polynomial timemachine𝐴 that for every pair of accepting

transcripts (𝑎, 𝑒, 𝑧) and (𝑎, 𝑒′, 𝑧′) (where 𝑒 ≠ 𝑒′) of an statement 𝑥 , 𝐴 extracts witness𝑤 s.t.

(𝑥,𝑤) ∈ 𝑅
• Special honest verifier zero knowledge: There exists a PPT machine 𝑆 which given

statement 𝑥 and 𝑒 can generate an accepting transcript (𝑎, 𝑒, 𝑧) whose distribution is the same

as the transcript of the real interaction of 𝑃 and𝑉 . More formally, ∀(𝑥,𝑤) ∈ 𝑅 and 𝑒 ∈ {0, 1}𝑡

{𝑆 (𝑥, 𝑒)} ≡𝑐 {(𝑃 (𝑥,𝑤),𝑉 (𝑥, 𝑒))} (36)

The output of simulator 𝑆 is denoted by {𝑆 (𝑥, 𝑒)}. {(𝑃 (𝑥,𝑤),𝑉 (𝑥, 𝑒))} indicates the output
transcript of an execution between 𝑃 (holding inputs 𝑥 and 𝑤) and 𝑉 (with inputs 𝑥 and

random tape 𝑒).

Zero-knowledge proof of knowledge from Σ protocols: Following the method given in [40, 56],

it is proven that one can efficiently construct a zero-knowledge proof of knowledge (ZKPOK)

system from any sigma protocol. We refer to [40] for more details of such construction. Applying

this method on a Σ protocol Π (defined for the relation 𝑅) will result in construction that securely

realizes the ideal functionality 𝐹𝑅Π (defined in Equation 37) in the presence of malicious prover and

verifier.

𝐹𝑅Π ((𝑥,𝑤), 𝑥) = (⊥, 𝑅(𝑥,𝑤)) (37)

where 𝑥 refers to the statement whose correctness is to be proven and𝑤 indicates the witness. The

ideal functionality 𝐹𝑅Π that is run by a trusted party, receives a common input 𝑥 from the prover

and the verifier. Also, the prover inputs 𝐹 with the private input𝑤 from the prover. 𝐹𝑅Π outputs to

the verifier whether 𝑥 and𝑤 fit into the relation 𝑅.

B PROOF OF INVITATION CORRECTNESS
B.1 Soundness:
Consider two valid transcripts (𝐴,𝐵 = (𝐵1, 𝐵2),𝐶 ,𝑒 ,𝑍1,𝑍2,𝑍3) and (𝐴,𝐵 = (𝐵1, 𝐵2),𝐶 , 𝑒∗,𝑍 ∗1 ,𝑍 ∗2 ,𝑍 ∗3),
where 𝑒 ≠ 𝑒∗, 𝑍1 ≠ 𝑍

∗
1
, 𝑍2 ≠ 𝑍

∗
2
, and 𝑍3 ≠ 𝑍

∗
3
, then we extract 𝛿𝑖 , 𝑟 and 𝑠𝑖 as explained below. Since

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

38 Sanaz Taheri Boshrooyeh, Alptekin Küpçü, and Öznur Özkasap

both transcripts are accepting we have 𝐴 · 𝛾𝑒𝑖 = 𝑔𝑍1
and 𝐴 · 𝛾𝑒∗𝑖 = 𝑔𝑍

∗
1 . We divide both sides of

equality and obtain

𝑔𝑍1−𝑍 ∗
1 = 𝛾𝑒−𝑒

∗
𝑖 = 𝑔𝑠𝑖 · (𝑒−𝑒

∗) (mod 𝑝) (38)

Thus, 𝑍1 − 𝑍 ∗1 ≡ 𝑠𝑖 · (𝑒 − 𝑒∗) 𝑚𝑜𝑑 𝑞. It follows that 𝑠𝑖 =
𝑍1−𝑍 ∗

1

𝑒−𝑒∗ . To extract 𝛿𝑖 and 𝑟 we proceed as

follows. We know that 𝐵1 · 𝑒𝛿𝑒𝑖,1 = 𝜔𝑍2 · ℎ𝑍3
as well as 𝐵1 · 𝑒𝛿𝑒

∗
𝑖,1 = 𝜔

𝑍 ∗
2 · ℎ𝑍 ∗3 . Dividing both sides of

equalities results in

𝑒𝛿𝑒−𝑒
∗

𝑖,1 = 𝜔𝑍2−𝑍 ∗
2 · ℎ𝑍3−𝑍 ∗

3 (mod 𝑝)
𝜔𝛿𝑖 (𝑒−𝑒∗) · ℎ𝑟 (𝑒−𝑒∗) = 𝜔𝑍2−𝑍 ∗

2 · ℎ𝑍3−𝑍 ∗
3 (mod 𝑝) (39)

As such, it follows that 𝛿𝑖 =
𝑍2−𝑍 ∗

2

𝑒−𝑒∗ mod 𝑞 and 𝑟 =
𝑍3−𝑍 ∗

3

𝑒−𝑒∗ mod 𝑞.

B.2 Special honest verifier zero-knowledge:
We construct a PPT simulator 𝑆𝑖𝑚 which is given 𝜏𝑖 , 𝑒𝛿𝑖 = (𝑒𝛿𝑖,1, 𝑒𝛿𝑖,2), 𝛾𝑖 , 𝜔 and 𝑒 and generates

an accepting transcript. It selects 𝑍1, 𝑍2, 𝑍3 at random and constructs 𝐴 =
𝑔𝑍1

𝛾𝑒
𝑖
mod 𝑝 and 𝐵1 =

𝜔𝑍
2 ·ℎ𝑍3

𝑒𝛿𝑒
𝑖,1

mod 𝑝 and 𝐵2 =
𝑔𝑍3

𝑒𝛿𝑒
𝑖,2

mod 𝑝 and 𝐶 = 𝜏−𝑒𝑖 · 𝐵 · 𝑒𝛿𝑒𝑖,1 · ℎ−𝑍3 · 𝜔𝑍1
mod 𝑝 . 𝑆𝑖𝑚 outputs (𝐴, 𝐵 =

(𝐵1, 𝐵2),𝐶, 𝑒, 𝑍1, 𝑍2, 𝑍3). It is immediate that the probability distribution of (𝐴, 𝐵,𝐶, 𝑒, 𝑍1, 𝑍2, 𝑍3) and
a real conversation between the honest prover and honest verifier are identical.

B.3 Zero-knowledge POIC (ZKPOIC):
We apply the method given in [40] to our Σ protocol to convert it to a zero-knowledge proof system.

Let 𝐹𝑅
𝑃𝑂𝐼𝐶

(given in Equation 40) demonstrate the security guarantees of the resultant ZKPOIC over

the relation 𝑅 that we defined in Equation 9.

𝐹𝑅𝑃𝑂𝐼𝐶 ((𝑋,𝑊), 𝑋) = (⊥, 𝑅(𝑋,𝑊)) (40)

𝐹𝑅
𝑃𝑂𝐼𝐶

shall be run by a trusted third party. 𝑋 refers to the statement whose correctness is to be

proven, i.e., 𝑋 = (𝜏𝑖 , 𝑒𝛿𝑖 , 𝛾𝑖 , 𝜔) contains the content of an individual invitation letter (𝜏𝑖 , 𝑒𝛿𝑖) as well

as the commitment to the inviter’s master share, i.e., 𝛾𝑖 , and the token 𝜔 . The witness𝑊 , which is

only known to the prover, is (𝑠𝑖 , 𝑟 , 𝛿𝑖). The ideal functionality 𝐹𝑅𝑃𝑂𝐼𝐶
receives a common input 𝑋

from the prover and the verifier as well as the private input𝑊 from the prover. 𝐹𝑅
𝑃𝑂𝐼𝐶

outputs to

the verifier whether 𝑋 and𝑊 fit into the relation 𝑅.

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article . Publication date: October 2023.

	Abstract
	1 Introduction
	2 Notations and Preliminaries
	3 Construction
	3.1 Construction Overview
	3.2 Full Construction
	3.2.1 SetUp:
	3.2.2 Token Generation:
	3.2.3 Invitation Generation:
	3.2.4 Invitation Collection:
	3.2.5 Invitation Verification:
	3.2.6 Registration:

	4 AnonymaX: Anonymous Cross-Network Invitation-Based System
	4.1 AnonymaX Construction
	4.1.1 SetUp
	4.1.2 Token Generation
	4.1.3 Invitation Generation
	4.1.4 Invitation Collection
	4.1.5 Invitation Verification

	5 Performance
	5.1 Running Time
	5.2 Communication Complexity
	5.3 Storage

	6 Security
	6.1 Inviter Anonymity
	6.1.1 Security Definition:

	6.2 Invitation Unforgeability
	6.2.1 Security Definition:

	6.3 Security of AnonymaX
	6.3.1 Inviter Anonymity
	6.3.2 Invitation Unforgeability

	7 Related Work
	7.1 Group Signatures and Linkable Group Signatures
	7.2 Selective-Disclosure Credentials with Threshold Issuance
	7.3 Electronic Voting (e-voting)
	7.4 (t,N) Threshold Ring Signature
	7.5 Direct Anonymous Attestation
	7.6 Delegatable Anonymous Credentials

	8 Conclusion
	References
	A Definitions
	B Proof of Invitation Correctness
	B.1 Soundness:
	B.2 Special honest verifier zero-knowledge:
	B.3 Zero-knowledge POIC (ZKPOIC):

